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Response time (RT), the time taken to complete a task,
is a common dependent variable in experimental psychol-
ogy and has been used to draw inferences about the nature
of mental processing (Luce, 1986). Most researchers tend
to analyze the mean RT, but a growing number of re-
searchers are examining whole RT distributions as a means
of providing more extensive and insightful tests of cogni-
tive and perceptual theories (e.g., Ashby, Tien, & Bala-
krishnan, 1993; Hockley, 1984; Logan, 1992; Ratcliff,
1978; Ratcliff & Rouder, 1998, 2000; Rouder, 2000;
Spieler, Balota, & Faust, 1996). For many paradigms and
research questions, it is advantageous to use several indi-
viduals and attempt estimating a group response time dis-
tribution that reflects the distribution of an average or typ-
ical individual. To this end, it is imperative to have a set of
tools for forming group RT distributions.

The current state of the art in forming group RT dis-
tributions is a nonparametric technique called Vincen-
tizing1 (Vincent, 1912). Figure 1 shows an example of
Vincentizing. Quantiles2 of individual RT distributions
are computed and then averaged to produce a group dis-
tribution. Panel A shows three individual distributions of
four observations each. For each individual, the smallest
observation is the .2 quantile, the next is the .4 quantile,
and so on. The .2 quantile of the Vincentized distribution
is the average of the .2 quantile of each participant, and
so on. To produce a group RT distribution, this averaging
procedure is applied to several quantiles. Ratcliff (1979)
provided a landmark study in which he claimed that the

mean of the Vincentized distribution was about the aver-
age of the individuals’ means, the variance was about the
average of individuals’ variances, and the shape was
about the average of individuals’ shapes. Panel B demon-
strates these properties. The first three histograms show
data from three hypothetical individuals (1,000 observa-
tions each). The fourth histogram is from the Vincentized
distribution, and it appears to have average mean, vari-
ability, and shape.

Because of these properties, Vincentizing has become
a useful tool in cognitive and perceptual psychology.
Some authors have used it to provide a pictorial view of
group RT distributions (e.g., Heathcote, Popiel, & Mew-
hort, 1991; Madden et al., 1999; Penner-Wilger, Leth-
Steensen, & LeFevre, 2002). Others have fit parametric
forms to the Vincentized distribution and have used the re-
sulting parameter values to draw conclusions about latent
psychological processes. For example, Logan (1992)
tested the instance theory of practice with Vincentizing.
He took blocks of six RTs per item and averaged quantiles
across participants. Then he estimated Weibull-distribu-
tion parameters from the Vincentized distributions. The
question of interest was whether the Weibull parameters
varied systematically with practice. Another example
comes from Andrews and Heathcote (2001). They used
Vincentizing to generate RT distributions across a num-
ber of word identification tasks, including word naming,
lexical decision, and the task of deciding whether a tar-
get word was a member of a previously presented seman-
tic category. They fit an ex-Gaussian (Hohle, 1965) to
Vincentized distributions and assessed whether word fre-
quency effects were manifested in the same ex-Gaussian
parameter across tasks. A third example comes from
Spieler et al. (1996), who looked at which ex-Gaussian
components of RT were affected by Stroop interference
across young adults, healthy older adults, and older adults
with Alzheimer’s-type dementia. A fourth example comes
from Ratcliff and Rouder (2000), who Vincentized RT
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Vincentizing (quantile averaging) is a popular means of pooling response time distributions across
individuals to produce a group average. The benefit of Vincentizing is that the resulting histogram
“looks like” an average of the individuals. In this article, we competitively test Vincentizing against the
more mundane approach of averaging parameter estimates from fits to individuals. We simulate data
from three distributions: the ex-Gaussian, the Weibull, and the shifted-Wald. For the ex-Gaussian and
the shifted-Wald, parameter averaging outperforms Vincentizing. There is only an advantage of Vin-
centizing for the Weibull and only when there are few observations per participant. Overall, we rec-
ommend that researchers use Vincentizing only in select circumstances and with the knowledge that
Vincentized estimates are often inconsistent estimators of averaged parameters.
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distributions in a letter identification task. These Vincen-
tized distributions were then fit with a diffusion model
(Ratcliff, 1979; Ratcliff & Rouder, 1998), and the result-
ing parameters were used to draw conclusions about the
dynamics of letter recognition.

To evaluate Vincentizing as a means of obtaining group
RT estimates, we start with a definition of a true or pop-
ulation group-level distribution. There is a fairly natural
definition of true group distribution within parametric
frameworks. Suppose that each individual’s true distrib-
ution follows a certain parametric form with unique pa-
rameters. The true group RT distribution is that certain
parametric form with parameters given by an average of
the individual parameters. For example, the Weibull dis-
tribution has three parameters: one corresponding to lo-
cation, another to scale, and a third to shape. Let us sup-
pose that each individual’s true distribution is a Weibull
but that they all have unique location, scale, and shape
parameters. By this definition, the true group distribution
is a Weibull. The true group location parameter is the av-
erage of each individual’s true location parameter, and
so on. Here, we study how well Vincentizing allows for the
recovery of these true group parameters.

Parametric analysis affords an alternative to Vincen-
tizing in constructing group RT distributions. Individual-
level parameters may be estimated from individual RT
distributions and then averaged to form group-level es-
timates. For the Weibull example, estimated group loca-
tion parameter is the mean of all the individual location
estimates, and so on. This approach is termed parameter
averaging. In this article, we competitively test Vincen-
tizing against two parameter-averaging methods to see
which best recovers group-level parameters.

There is reason at the outset to suspect that Vincentiz-
ing may be inferior to parameter averaging. Estimators in
psychology are usually consistent. A consistent estima-
tor will converge to its true value with increasing sample
size; an inconsistent estimator will not. Consistency is
desirable because estimation can be made arbitrarily ac-
curate by choosing a sufficiently large sample. Almost
all common estimators are consistent, including sample
mean, sample variance, and sample correlation. Typical
approaches to estimating individual RT distributions,
such as maximizing likelihood and minimizing chi-square,
are also consistent, at least under mild technical conditions
(Hogg & Craig, 1978). Averaging individual parameter es-
timates is certainly a consistent estimator of the underlying
population average if the individual parameter estimates
are consistent. But estimates of true group parameters from
Vincentized distributions are generally not consistent.
Thomas and Ross (1980) showed that for Vincentizing to
yield consistent parameter estimates, the individual distri-
butions must be of a specific type: They must be from a
common location-scale family. Examples of such distribu-
tions include the normal and exponential but do not include
distributions in which the shape changes. We discuss the
sampling properties of Vincentizing for location-scale fam-
ilies elsewhere (Jiang, Rouder, & Speckman, 2004). Here,
we evaluate Vincentizing vis-à-vis parameter averaging for
three non–location-scale distributions: the ex-Gaussian, the
Weibull, and the shifted-Wald distributions. For all three of
these distributions, group parameter estimates from Vin-
centized distributions are necessarily inconsistent.

Inconsistency, in and of itself, is not fatal. An estimator
could still well approximate the parameter it is intended to
estimate. But it must be realized that with a sufficiently

Figure 1. Examples of Vincentizing. Panel A shows how quantiles are averaged. Panel B shows that Vincentized
distribution is an “average” of the individual distributions.
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large sample, a consistent estimator will always outper-
form an inconsistent estimator. Therefore, we already
have a partial answer to our question. We know that, for
those cases in which Vincentizing produces inconsistent
estimators, there necessarily exists a sample size above
which parameter averaging is the superior method.

SIMULATION STUDY

To assess the relative performance of Vincentizing and
parameter averaging, we performed a set of simulation
studies. The relative performance of the methods depends
on how much variability there is in RT across individuals.
To ensure a realistic degree of across-participants vari-
ability3 and, hence, increase the generalizability of the
results, we based our simulations on a large data set con-
sisting of 80 observations for each of 80 individuals.4 We
fit each individual’s RT distribution with three paramet-
ric forms. The resulting parameter values served as truth
values for the subsequent simulations. These truth val-
ues were used to generate artificial data for each indi-
vidual. Group-level parameters were then estimated
from the artificial data by either Vincentizing or param-
eter averaging.

Parametric Distributions
We used three distributions to test Vincentizing and

parameter averaging. Our choice was not meant to be ex-
haustive but was representative of the range of options in
the modeling of RT.

Ex-Gaussian. The ex-Gaussian is a popular form that
describes the addition of an exponentially distributed
and a normally distributed stage. There are three param-
eters, one that describes the scale of the exponential (de-
noted τ) and two that describe the mean and the scale of
the normal (denoted µ and σ, respectively). The density
of the ex-Gaussian is given by

where Φ is the cumulative distribution function of the stan-
dard normal distribution. Typically, the exponential dis-
tribution represents the duration of decision processes
that are thought to be central and consciously controlled
(Balota & Spieler, 1999). The normal distribution repre-
sents the duration of sensory processes that are thought
to be peripheral and automatic. Histograms of the indi-
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Figure 2. Histograms of truth values used in the simulations for the three distributions. All three parameters of ex-
Gaussian, the shift and scale parameter of the Weibull, and the shift parameter of the shifted-Wald are measured in milli-
seconds. The shape of the Weibull and the bound of the shifted-Wald are dimensionless quantities. Drift rate is measured
in units of 1/msec.
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vidual truth values for the ex-Gaussian used in the sim-
ulations are shown in Figure 2. These values were ob-
tained by maximum likelihood estimation.

Weibull. The Weibull is a three-parameter distribution
with parameters of shift, scale, and shape. The density of
a Weibull is given by

where (ψ, θ, β) are the shift, scale, and shape parameters,
respectively, τ � ψ, and θ,β � 0. Logan (1988, 1992)
noted that the Weibull describes race processes and used
it to model performance gains from practice. Alterna-
tively, Rouder, Sun, Speckman, Lu, and Zhou (2003) use
the preceding distinction between peripheral and cen-
tral processes in their interpretation of Weibull param-
eters. Changes in shape across two conditions or popu-
lations are assumed to reflect structural changes in cen-
tral processing, such as insertion of stages (e.g., Ashby
& Townsend, 1980; Balota & Chumbley, 1985). Changes
in scale reflect change in the rate or speed of central pro-
cessing but no changes in structure or strategy. Finally,
changes in location reflect changes in sensory processes.
Histograms of the truth values for the Weibull used in
the simulations are shown in Figure 2. These were ob-
tained by Rouder et al. through a hierarchical Bayesian
approach. The values are similar to maximum likelihood
estimates.

Shifted-Wald. The shifted-Wald is a three-parameter
form that describes a diffusion process for RT tasks with
a single response—for example, simple detection or the
go/no-go task. The parameters5 are the drift rate of the
process, the boundary, and a residual shift parameter. This
residual shift parameter denotes the time taken for nonde-
cisional processes, such as encoding the stimulus and
motor processes responsible for making the response (this
parameter is termed TER in Ratcliff ’s diffusion model).
Recently, Schwarz (2001) has introduced an ex-Wald dis-
tribution—a model of the addition of a Wald distributed
stage with an exponentially distributed stage. Here, we
use the shifted-Wald instead of the ex-Wald, since the
shifted-Wald is more similar to two-choice diffusion mod-
els. The density of the shifted-Wald is given by

where (ψ, α, µ) are the shift, bound, and drift rate pa-
rameters, respectively, τ � ψ, and α,µ � 0. Histograms
of the truth values for the shifted-Wald used in the sim-
ulations are shown in Figure 2. These were obtained by
the nonlinear least-squares method described below. For
3 of the 80 participants, the value of the shift was below
zero. Negative shift values are psychologically implau-
sible, and the simulation study was based on the remain-
ing 77 participants.

Three Different Estimation Methods
Group-level parameters were estimated by three dif-

ferent methods.
Vincentizing � least squares (V�LS). First, sample

quantiles are computed and averaged—that is, Vincen-
tized. Then, the estimated parameters are those that min-
imized the sum square difference between these averaged
quantiles and the predicted quantiles. This least-squares
method is asymptotically optimal for averaged quantiles
for location-scale random variables, such as the normal
and the exponential (Jiang et al., 2004), and serves as a
suitable method here.

Maximum likelihood � parameter averaging (ML�
PA). Maximum likelihood is an accepted and recom-
mended method in both the statistics literature (e.g.,
Lehmann, 1991) and the psychological literature (e.g.,
Dolan, van der Maas, & Molenaar, 2002; Van Zandt,
2000). Individual-level maximum likelihood estimates
are averaged (across individuals) to produce group-level
estimates.

Least squares � parameter averaging (LS�PA).
This is a quantile-based approach similar to that in Heath-
cote, Brown, and Mewhort (2002). Individual parameter
estimates are those that minimize the sum square differ-
ence between individual’s quantiles and predicted quan-
tiles. Individual estimates are averaged to produce group-
level estimates. This approach is comparable to V�LS, ex-
cept that the order of averaging and estimating is reversed.

Method
Figure 3 provides a schematic for the simulations with

the Weibull distribution. The simulations for the other
two distributions were run in an identical manner. There
is a separate individualized true value for the shift, scale,
and shape parameters (denoted with “T-Shift” in Box 1
in the figure). Using the truth values, we defined the true
group parameters as the arithmetic average across the
true individual parameters—for example, the true group
shift parameter is the average of individual true shift pa-
rameters (see Box 2 in the figure). Data were simulated
from individual truth values, as is indicated in Box 3. Pa-
rameters were estimated from the data set with either pa-
rameter averaging (ML�PA, LS�PA; see Boxes 4 and
5) or Vincentizing (V�LS; see Boxes 6 and 7). The fig-
ure shows the case with 80 observations per participant.
We also ran a second set of simulations with 20 obser-
vations per participant to explore the small sample be-
havior of the estimation methods.

Results
Ex-Gaussian. The estimation errors for the three pa-

rameters are displayed as boxplots in Figure 4. The top
row is for the first data set with 80 observations per in-
dividual. The bottom row is for the second data set with
20 observations per individual. The results show that
Vincentizing (V�LS) is biased and the least effective
method of estimation. The parameter-averaging techniques
are fairly accurate. The two parameter-averaging methods
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are fairly equivalent for 80 observations per individual,
whereas LS�PA outperforms ML�PA with 20 observa-
tions per individual. Overall, researchers should use pa-
rameter averaging (perhaps LS�PA) when fitting the ex-
Gaussian.

Why does LS�PA outperform the Vincentizing
method? As was previously mentioned, the Vincentizing
method necessarily produces inconsistent estimators.
For all sample sizes, the Vincentized estimators will be
biased. For this distribution, LS�PA approaches the un-
biased asymptotic limit quickly, even with sample sizes
as small as 20 observations per individual. We speculate

that the increased performance of LS�PA over ML�PA
at 20 observations per individual reflects the nonasymp-
totic properties of the estimators for this distribution and
does not necessarily generalize to other distributions. Al-
though we are surprised at the result, it is consistent with
the results of Heathcote et al. (2002; see also Speckman
& Rouder, 2004, and Heathcote & Brown, 2004, in this
issue). They reported an advantage of a related quantile-
based estimation method that they termed quantile max-
imum likelihood estimation.

Weibull. Figure 5 shows the estimation errors for the
Weibull distribution as boxplots. With 80 observations

Figure 3. Schematic of the simulation method.

Figure 4. Boxplots of estimation errors of group parameters for the ex-Gaussian distribution.
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per individual, all three techniques provided estimates
with modest degrees of bias and fairly comparable stan-
dard errors. The situation changed drastically when
there were only 20 observations per individual. LS�PA
estimates were wildly biased and variable; for example, 
the shift parameter had a mean error on the order of
�1,000 sec and a standard error on the order of 10,000 sec.
It is impossible to fit the boxplots of the group parameter
estimates on the same graph with the other two methods.
Overall, the two parameter-averaging methods fail spec-
tacularly, whereas the Vincentizing method does fairly
well. Importantly, these failures do not reflect failures of
the numerical optimization routine to find maxima or

minima of the objective functions. In almost all cases,
outputs of the numerical routines converged to their pre-
set criteria. Instead, the failures reflect an underlying in-
ability of the parameter-averaging methods to provide
robust estimates with small sample sizes.

The dramatic failure of parameter-averaging methods
comes about because the Weibull is an “ill-behaved” dis-
tribution. The main problem is that for high values of
shape parameter, corresponding increases in the param-
eter do not substantially affect the distribution. Figure 6
shows this phenomenon. Each density has the same mean
and variance, but the shape parameter is varied from 7 to
7,000. The consequence for estimation is that small

Figure 6. The Weibull distribution is “ill-behaved” in that distributions with vastly
different parameters mimic each other.

Figure 5. Boxplots of estimation errors of group parameters for the Weibull distribution.
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changes in the data result in huge changes in parameters
that span several orders of magnitude. Fortunately, this
parameter tradeoff is present only for Weibull distribu-
tions with high shape values (those that skew left). If the
Weibull has shape parameter values in the ranges typical
for RT distributions (1.3–3.4), the tradeoff is not present.

The instability demonstrated in Figure 6 raises prob-
lems when Weibull parameters are estimated from small
samples. Due to random variability, the sample distribu-
tion for small samples may be symmetric or even skewed
left. In this case, the Weibull estimates may vary by sev-
eral orders of magnitude. This is exactly what happened
in the simulation with 20 observations per individual.
Vincentizing is not susceptible to the same instabilities

as parameter averaging. The Vincentized distribution
maintains a moderate degree of right skew and is not af-
fected disproportionately by extreme samples. Weibull
parameters most concordant with the Vincentized sam-
ples are not in the range in which the instability occurs.
The upshot is a massive advantage in Vincentizing for
small sample sizes.

With the results from the two different sample sizes, it
is easy to make recommendations. For sample sizes
smaller than 80 samples per individual, Vincentizing is su-
perior to parameter averaging. For sample sizes around 80,
the methods are fairly equivalent. But because parameter-
averaging methods are consistent and Vincentizing is
not, the parameter-averaging methods will be more ac-

Figure 7. Boxplots of estimation errors of group parameters for the shifted-Wald distribution.

Figure 8. The shifted-Wald distribution is “ill-behaved” in that different parameter
settings can yield similar distributions.
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curate with larger sample sizes. Our results indicate that
the crossover point is around 80 observations per indi-
vidual. Of course, these results hold for this data set; but
on the grounds that this is a representative set for quick
accurate decisions, it can be generalized to data from
similar tasks.

Shifted-Wald. Figure 7 shows the estimation errors for
the shifted-Wald as boxplots for the LS�PA and V�LS
methods. ML�PA estimation errors are not graphed,
since they were even larger and more variable than those
displayed. For example, the ML�PA estimate for shift
has an average error of �118 msec and a standard devia-
tion of 130 msec. Although LS�PA outperforms Vin-
centizing in terms of variability and bias, both methods
yield surprisingly biased and variable estimates. Figure 8
shows two shifted-Wald densities that are fairly similar.
Even though the densities are similar, the corresponding
parameters are quite different. Small changes in the dis-
tribution from sampling variability result in large changes
in the parameters. Although this ill-behavior is not as ex-
treme as that with the Weibull, it is somewhat more en-
demic and occurs for right-skewed distributions. Because
of this ill-behavior, parameter estimation within the shifted-
Wald is difficult, and researchers need hundreds of obser-
vations per participant to sufficiently localize parameters.
Nevertheless, the simulations reveal that averaging individ-
ual least-squares parameters is the best method for esti-
mating group parameters.

CONCLUSION

The preceding analyses demonstrate that Vincentizing
should not be the de facto means of constructing group RT
distributions. Group estimates from Vincentized quantiles
are often less accurate than those obtained from averaging
individual parameter estimates. For non–location-scale
families, such as the ex-Gaussian, Weibull, and shifted-
Wald distributions, Vincentized estimates of group pa-
rameters are not consistent—they do not converge to true
values. This inconsistency means that for some sample
size, parameter averaging will outperform estimates from
Vincentized distributions. For the ex-Gaussian and shifted-
Wald, we found through simulation that estimates from
parameter averaging are less error prone than those from
Vincentizing (at least for sample sizes larger than 20 ob-
servations per participant). We advise researchers using the
ex-Gaussian or shifted-Wald to consider parameter aver-
aging. However, there are some cases in which Vincentiz-
ing is more accurate. In the Weibull distribution, insta-
bility of individual parameter estimates with small sample
sizes leads to horrible estimation properties in both indi-
vidual and group parameter estimates. These instabilities
do not affect Vincentized estimates. Of course, these results
are obtained from simulated data, and it is unknown how
robust the estimation methods are to misspecification.

We have two concluding recommendations. First, we
recommend that researchers precisely define what they
mean by a true group RT distribution. We explore the para-

metric approach to modeling RT, in which it is fairly nat-
ural to define true group RT distributions as those with
parameters given by averages of true individual param-
eters. Only within the context of a precisely defined true
group RT distribution can one estimate group param-
eters or perform inference. Second, we recommend that
researchers explore, through simulation, both parameter
averaging and Vincentizing to find out which is best for
their particular application. Perhaps the strongest result
from this set of studies is that although Vincentizing may
work well when distributions are ill-behaved, it is less
than optimal for other applications.
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NOTES

1. There are a few variants of the Vincentizing procedure, as has been
discussed by Heathcote (1996). In this article, we average sample quan-
tiles across individuals. See Heathcote or Van Zandt (2000) for a dis-
cussion of alternative averaging methods.

2. The term quantile is similar to the term percentile; the difference is
that whereas percentiles range from 0 to 100, quantiles range from 0 
to 1. The pth quantile of a distribution is the value such that a probabil-
ity of observing an observation below the value is p. We refer to p as the
probability of the quantile—for example, the .1 quantile is the same as
the 10th percentile. The ith ranked observation served as the quantile es-
timator for p � i/(M � 1), where M is the number of observations. This
formula for estimating a probability of a quantile is commonly used in
statistical software packages (e.g., SAS’s Proc-Univariate). There are
other alternatives (see, e.g., Hyndman & Fan, 1996).

3. Variability in shape across participants is a key determinant of the
properties of Vincentizing. If there is no variability in shape across in-
dividuals, RT can be modeled as a location-scale distribution, and Vin-
centizing yields consistent estimation (Jiang et al., 2004).

4. We thank Michael Stadler for use of his data. Participants had to
identify in which of four locations an asterisk was presented by de-
pressing one of four computer keyboard keys. Each participant re-
sponded to 120 such trials. The last 80 correct observations between
200 and 1,200 msec served as data.

5. There is an additional parameter, termed the coefficient of drift
(Feller, 1968), which serves to scale the units of the other parameters.
Without any loss of generality, we set this parameter to 1 msec�1.
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revision accepted for publication June 30, 2003.)
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