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Abstract

Mickes, Wixted, and Wais (2007) propose a simple test of latent strength variability in

recognition memory. They asked participants to rate their confidence using a either a

20-point or 99-point strength scale and plotted distributions of the resulting ratings. They

find 25% more variablity in ratings for studied than for new items, which they interpret as

providing evidence that latent mnemonic strength distributions are 25% more variable for

studied than for new items. We show here that this conclusion, as well as those from ROC

analysis, are critically dependent on assumptions—so much so that these assumptions

determine the conclusions. In fact, opposite conclusions, such that study does not affect

the variability of latent strength, may be reached by making different though equally

plausible assumptions. Because all measurements of mnemonic strength variability are

critically dependent on untestable assumptions, all are arbitrary. Hence, there is no

principled method to assess the relative variability of latent mnemonic strength

distributions.

KEYWORDS: Recognition Memory; ROC Curves; Signal Detection Models.
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Latent Mnemonic Strengths are Latent: A Comment on Mickes,

Wixted, and Wais (2007)

It has long been debated whether memory is served by a single mnemonic process or

several distinct ones (Schacter & Tulving, 1994; Wixted, 2007; Yonelinas & Parks, 2007).

A current focus in this debate is the role of these processes in recognition memory. In a

recognition memory paradigm, participants decide at test if items were previously studied

or are new. The results are often summarized with receiver operating characteristic

(ROC) curves. Empirically observed ROC curves tend to be asymmetric around the

negative diagonal (see the dashed line in Figure 1B). These asymmetries, first popularized

by Ratcliff, Sheu, & Grondlund (1992) and replicated repeatedly (see Glanzer, Kim,

Hilford, & Adams, 1999; Yonelinas & Parks, 2007, for a review) have served as a

first-order phenomenon to be explained by theories of mnemonic process.

One single-process model of ROC asymmetry is the unequal-variance signal

detection model. This model posits that participants evaluate the mnemonic strength of

items against criteria. The strengths for studied and new items are distributed as normal

random variables. The effect of study is in two parameters: it both displaces the mean

and increases the variability of the strength distribution. If the distributions for studied

and new items have the same variance, then the model predicts symmetric ROC plots

(Figure 1B, solid line), which is not characteristic of observed data. Asymmetric ROCs

result if the variances are unequal (Figure 1A, dashed line), and the unequal-variance

model agrees with observed data (Wixted, 2007). For the unequal-variance normal model,

the degree of asymmetry in ROCs is a function of the ratio of standard deviations of the

underlying strength distribution. Let σn and σs denote the standard deviations of the

strength distributions for new and studied items, respectively. Glanzer et al. (1999) and

Yonelinas & Parks (2007) performed large meta-analyses with the unequal variance
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normal model and found that estimates of σn/σs tend to be around .8; that is, the

studied-item distributions tend to be 25% larger in standard deviation than new-item

distributions. Figure 1C shows z-ROC curves; if strengths are distributed as normals,

then the resultant curves are straight-lines with slopes given by σn/σs.

Mickes, Wixted, and Wais (2007, hereafter referred to as MWW) advocate a new

and seemingly direct test of the ratio of variability for latent strength distributions

without recourse to ROC analysis. Participants rate confidence on a unidimensional scale

with a large number of options. MWW plotted the distributions of ratings for studied and

new words; Figure 2 shows their results. The distribution for studied items (solid bars) is

more dispersed than that for new items (hatched bars). For the purposes of this paper, we

term these distributions as response-category distributions and the ratio of the standard

deviations of these distributions as the response-category standard-deviation ratio. The

key finding of MWW is that the response-category standard-deviation ratio is .83, which

is quite close to the .8 value observed from ROC analysis. Moreover, MWW find that this

near equivalence holds on a participant-by-participant basis. Based on these equivalences,

MWW conclude that latent strengths are more variable for studied than for new items.

They use this conclusion to bolster support for the unequal-variance signal detection

model, a single-process account of recognition memory performance.

We argue here that MWW’s conclusion about the variance of latent distributions is

unjustified. The problem is that this conclusion is exceedingly dependent on initial

assumptions, so much so that the assumptions determine the conclusion. In fact, an

opposing conclusion may be reached by relying on different but equally plausible

assumptions. Moreover, MWW’s assumptions are not testable—as a matter of

mathematical logic, there is no way of gathering evidence for or against them. As is shown

here, there are unavoidable limits on what may be learned about latent strength

distributions.
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Latent Distributions and ROC Analysis

Researchers assume that latent strengths are normally distributed when interpreting

ROC asymmetries as an index of the ratio of variance (see Figure 3). Normality is a

common assumption for analyzing observables in experimental psychology and underlies

t-tests, ANOVA, and regression. The assumption of normality is benign in most

applications because these tests are robust to moderately large violations (Young &

Veldman, 1965). Restated, as long as the underlying distributions are not extremely

different than normals, these tests have real Type I error rates not much inflated over the

nominal values. Moreover, concerned researchers can always check whether their data are

normally distributed and use nonparametric tests if gross deviations are detected.

The situation is different for the analysis of ROC data. We follow Egan (1975) and

show here that distributional assumptions, such as normality, completely determine the

ratio of standard deviations. Figure 3A-C show three examples in which ROCs are exactly

identical, yet the standard-deviation ratio varies with distributional assumptions. The top

row shows the case in which strengths are distributed as normals with greater mean and

variance for studied than new items. The standard-deviation ratio, σn/σs in the figure is

.80. The resulting asymmetric ROC and straight-lined z-ROC are shown. A criterion is

drawn (vertical dashed line) for illustrative purposes and it corresponds to a hit and false

alarm rate of .745 and .250, respectively. These values are shown as a point on the ROC

and z-ROC plots.

Figure 3B shows the case for a different set of distributions: log-normals. These

particular distributions were obtained by exponentiating the normals in the top row. The

standard deviation ratio for these distributions is .114, which is more extreme than the .8

ratio in the top row. Surprisingly, the single criteria at a false-alarm rate of .250

corresponds to a hit rate of .745, the same values as with the normals. In fact, even

though the distributions in Figure 3B are not normal, the resulting ROC and z-ROC plots
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are exactly identical to the normal-distribution ROC and z-ROC plots in Figure 3A,

respectively. Because the normals and log-normals in 3A and 3B produce exactly identical

ROC and z-ROC plots, they can never be differentiated with ROC data, no matter how

large the sample size. Importantly, any statistical goodness-of-fit metric from ROC data

will yield numerically identical support for the distributions in 3A and 3B.

Figure 3C shows a different example of the same equivalence. The distributions

come about by passing the normals through an inverse-probit transform as follows: Let X

be a normal. The distributions shown, denoted Y , are produced from Y = Φ(2X/3),

where Φ is the cumulative distribution function of the standard normal. The

standard-deviation ratio for these distributions is 1.1; that is, the noise distribution is

more dispersed than the signal distribution. Though the distributions may seem strange,

they may be used to model variables with finite upper and lower bounds, such as the firing

rates of nerve cells. Even though the new-item distribution is more dispersed than the

studied-item distribution, the ROC and z-ROC plots are identical to the previous

examples. The three models in Figure 3A-C make exactly identical ROC and z-ROC

predictions and can never be distinguished. This equivalence of ROCs demonstrates a key

fact—models with different standard deviation ratios may produce identical ROC

predictions. Therefore, estimation of standard deviation ratio from ROC data is

impossible; any numeric result reflects arbitrary and untestable assumptions.

It is worthwhile to consider how these ROC equivalences occus. Let X1 and X2

denote the normal distributions in Figure 3A. In this case X1 ∼ Normal(0, 1) and

X2 ∼ Normal(1.5, 1.25), where the arguments of the normal are the mean and standard

deviation, respectively. Let Y1 and Y2 denote the log-normal distributions in Figure 3B.

We constructed these as Y1 = exp(X1) and Y2 = exp(X2). Although the log-normal and

normal distributions are different, there is an important invariance concerning the areas

under the curves. The criterion in Figure 1A is at .67 and divides the bottom 75% of the
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noise strength distribution from the top 25%. When these upper 25% are exponentiated,

they are all above exp(.67), likewise, the bottom 75% of Y1 are below exp(.67). The same

holds true for the signal distribution. The criterion at .67 divides the bottom 25.5% from

the top 74.5%. Consequently, 25.5% and 74.5% of Y2 are above and below, respectively,

the criteria of exp(.67). The hit and false alarm rates are the percentages above criteria,

or .25 and .745, respectively, for X1 and X2 and for Y1 and Y2. Hence, the point (.25, .745)

is on both ROC curves in Figure 3A and 3B. In fact, this equivalency can be shown for all

criteria, and consequently, the ROC curves in Figure 3A and 3B must be exactly identical.

The same holds for z-ROC curves.

The equivalence of ROC curves holds as follows: Let Y1 = g(X1) and Y2 = g(X2). If

g is a strictly monotonic function, such as an exponential or logarithm, then the ROC of

Y1 vs. Y2 is identical to that of X1 vs. X2. In Figure 3C, we constructed the distributions

through the function Φ(3x/2), which is strictly monotonic. There are uncountably many

different strictly monotonic functions g, hence there are uncountably many non-normal

distribution pairs that give rise to identical ROCs and exactly straight-line z-ROCs. In

these non-normal pairs, the slope of the straight-line is unrelated to the

standard-deviation ratio.

Not all distribution pairs produce the same ROCs. Figure 3D shows the case of

uniforms: X1 ∼ Uniform(0, 1), X2 ∼ Uniform(.5, 1.5). These distributions produce ROCs

different than normals. We can transform X1 to a normal by taking g = Φ−1, e.g.,

Y1 = Φ−1(X1) ∼ Normal(0, 1). We cannot, however, use the same transform on X2 as

Φ−1(X2) is undefined when X2 > 1. Hence, there is no common function g that can map

two different uniforms each into normals, and, consequently, the ROCs are different than

normal pairs.

We discriminate the above argument from Egan (1975) about the identity of ROCs

from Lockhart and Murdock’s (1970) well-known argument about ROC mimicry. Lockhart
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and Murdock noted that many distribution pairs mimic straight line z-ROCs, for instance,

the gamma distributions shown in Figure 3E produce nearly straight-line zROCs. Most

recognition models, such as the dual-process model (Yonelinas, 1994), the extreme-value

distribution model (DeCarlo, 1998), or the mixture-of-normals model (Decarlo, 2002)

mimic straight-line z-ROCs rather than predict linearity exactly. These distribution

families that mimic straight line z-ROCs may be theoretically distinguished from normals

with exceptionally large sample sizes. Egan’s argument is stronger than Lockhart and

Murdock’s because ROCs from transformed distributions are exactly identical to the

original distributions, as shown in Figure 3A-C. The fact that standard deviation ratios

vary across distribution pairs that yield identical ROCs and z-ROCs (Figure 3A-C) shows

these ratios reflect nothing more than arbitrary and untestable distributional assumptions.

Response-Category Distributions

MWW note that their inferences about standard deviation ratios from ROCs are

dependent on the assumption of normality. This dependence, in fact, is part of the

rationale for measuring standard deviation from response category distributions. Response

categories form an ordinal scale; that is, higher ratings indicate greater strength.

Measurements of central tendency and dispersion, however, are predicated on interval

scales, which are stronger than ordinal scales. For response categories to form an interval

scale, differences in ratings must be linearly related to differences in latent strength. For

instance, the difference in strength between Categories “14” and “15” must be the same as

that between Categories “4” and “5.” Clearly, the interval scale assumption is too strong

as there is no reason to believe that the difference between Categories “14” and “15” is the

same as that between Categories “4” and “5.” The interval-scale assumption is equivalent

to assuming that the criteria on latent strength are equally spaced and cover the support

of the distributions. As shown by MWW, if this assumption does not hold true, then the
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variance of the response categories will not reflect that of the underlying latent

distributions. MWW provide the example in Figure 4 in which an equal variance normal

model may give rise to larger response-category standard deviations for studied than for

new items, or vice-verse. Once again, the inference about standard deviation ratios is

critically dependent on an assumption; furthermore, this assumption is untestable.

MWW use far more response categories than usual (20 and 100 in Experiments 1

and 2, respectively). Unfortunately, adding more response categories does not ameliorate

measurement difficulties. As an extreme case, consider an infinite number of response

categories, which may be implemented by having participants turn a dial to indicate the

strength of the test item. It is reasonable to ask whether this approach can provide a

principled assessment of latent distribution variability, because if so, then a large number

of response categories may be seen as an approximation to setting a dial. The situation

seems promising because unlike response category data, the values of the dial may be

measured on a ratio scale (such as angular displacement) and judgments may be made

directly without recourse to criteria. One problem, however, is that these judgments are

made on a physical scale of angular displacement rather than on a psychological scale of

mental strength. Psychologists have long known that the transformation between the two

is not trivial (e.g., Fechner, 1966; Stevens, 1957). If this transformation is linear then the

variance of the distributions on the dial settings reflect the relative variance of latent

strengths. Yet, this assumption of linearity is problematic as the resulting conclusions

about variance are completely dependent upon it. If the transformation is logarithmic or

exponential, then the wrong conclusion will be reached. Moreover, there is no way of

testing the linearity assumption in MWW’s paradigm.
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The Numerical Equivalence of the Standard Deviation Measures

MWW show that standard deviation ratios, whether computed by ROC or by

response category, are about the same. Moreover, this near equivalence holds, more or less,

on a participant-by-participant level; in fact, the measures correlate .83 and .61 in two

experiments. As we have shown, the normality assumption is critical in interpreting the

ROC standard-deviation ratio; the equal-spacing assumption is critical in interpreting the

response-category standard deviation ratio. Perhaps this numerical equivalence indicates

that both assumptions are likely and that both standard-deviation ratio values are valid.

MWW’s data, however, show that both assumptions cannot hold simultaneously. If

both held, then the distributions in Figure 2 would be normal. Instead, the distributions

have substantial and opposing skewness. The implication is that at least one of the

assumptions is wrong. Given that at least one of the assumptions is wrong, and hence at

least one of the ratios does not measure the intended construct, it is difficult to take

seriously the near equality of the two measures.

Two Equivalent Models

We demonstrate the arbitrariness of MWW’s conclusion that studied-item latent

strengths are more variable than new-item latent strengths by constructing two completely

equivalent models of their data from Experiment 1. The first account, shown in Figure 5A,

is an unequal-variance account, which is in line with MWW’s conclusions. The standard

deviation of the studied item distribution was fixed to 1.25, hence the true slope of z-ROC

curves is .8. Free parameters were d′ and the criteria (shown as dotted vertical lines);

these free parameters were estimated by minimizing the mean-squared error between the

predicted response-category proportions and observed proportions. The resulting

predicted response-category distributions are shown in Figure 5C. These distributions

correlate .98 with the empirical distributions obtained by MWW (see Figure 2). The
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second account is shown in Figure 5B. The distributions in Figure 5B have about equal

variances (the standard deviation ratio is .99). We constructed these distributions by

monotonically transforming the distributions in Figure 5A; in this case the transform was

Φ(2X/3), where X denotes the normal distribution in Figure 5A. Because this transform

is strictly monotonic, the resulting z-ROC curves are exactly straight lines with a slope of

.8. With the drawn criteria1, the model yields exactly identical predictions as the model

in Figure 5A, namely the predictions in Figure 5C. Hence, a model with equal variances

explains important aspects of MWW’s data as well as one with unequal variances.

As mentioned previously, MWW report a positive correlation between ROC and

response category standard deviation ratios across participants. To explore whether these

correlations are expected under the equal-variance model of Figure 5B, we simulated data.

In our first simulation, we assumed that all participants shared the same underlying

mnemonic strength distributions and used the same criteria. All of the variability,

therefore, was due to sampling noise. For each hypothetical experiment, we generated

data for 14 participants, each tested on 150 studied and 150 new items. These sample

sizes are those from MWW, Experiment 1. From these data, we computed both standard

deviation ratios for each participant (see MWW for details). Over 1000 such hypothetical

experiments, the average correlation between these two ratios was .77, with 95% of the

values between .46 and .93. In a second simulation, we set a high degree of participant

variability in sensitivity, criteria, and true standard deviation ratio.2 The averaged

correlation between the ratios was .60, with a 95% of the values between .14 to .88. These

simulation results show that correlations in standard-deviation ratios are expected. They

are unsurprising as both measures are conditioned on the same raw data. In sum, there

are no aspects of MWW’s data that are incompatible with an equal-variance model.
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Conclusion

Latency and Variability

The key finding of the above analyses is that it is logically impossible to measure

the ratio of variability across latent distributions. Any conclusion about the ratio simply

reflects a priori assumptions that are not testable. MWW used the measurement of latent

variability to bolster support for unequal-variance normal signal detection, their preferred

single-process explanation of recognition memory phenomena. We show here that MWW’s

data offer no support for unequal variances in particular or for single-process accounts in

general.

We suspect that ROC analysis will prove important and helpful in adjudicating

between single and multiple process accounts. We are not, however, convinced that the

current approach of specifying parametric models is best. Popular models (such as the

unequal-variance normal model or Yonelinas’ dual-process model) are perhaps specified

too finely as ROC data provide only ordinal constraints on latent strengths. As an

alternative, researchers may wish to focus on ordinal rather than parametric properties of

latent strength distributions.

Dominance of ROC Curves

One promising ordinal property is dominance of ROC curves, which is illustrated in

Figure 6 and defined as follows: Consider an experiment with two levels of a factor

manipulated at study; for example, two levels of study duration. Figure 6A provide an

example of strength distributions for new items (solid) as well as for studied items from

Condition 1 (dashed) and Condition 2 (dash-dotted). Studied-item strength in Condition

1 is unambiguously larger than that in Condition 2. More formally, the studied-item

stength distribution for Condition 1 stochastically dominates that for Condition 2.

Stochastic dominance implies that CDFs of the studied-item distributions order as in
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Figure 6B. This stochastic dominance implies that the ROC curves order as well and

never cross (see Figure 6C). The right column of Figure 6D-F provides an example where

stochastic dominance is violated. In Figure 6D, for example, the strongest strengths for

Condition 1 are stronger than the strongest strengths for Condition 2, yet the opposite

holds for the weakest strengths. Consequently, the ROCs do not order (Figure 6F).

A single-process model would have to be quite complex to handle ROC crossings

such as that in Figure 6F. If these cases can be documented, such phenomena may be

more parsimoniously accounted for by two-process models. Conversely, a systematic

failure to find ROC crossings lends support to the applicability of one-process,

strength-based accounts. Because ROC dominance is an ordinal property, it is defined

without recourse to untestable parametric assumptions.
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Footnotes

1Let c1, . . . , c19 denote the 19 criteria in Figure 5A and let c∗1, . . . , c
∗
19 denote the

same in Figure 5B. Response category predictions for the two models are preserved when

c∗i = Φ(2ci/3).

2Individual d′ (before transform) was sampled from Normal(1.145,.33); individual’s σ

(before transform) was sampled from exp(Normal(.2, .2)); individual criteria (after

transform) were the order statistics from 19 draws of a beta(1.5,1.1) (see Rouder & Lu,

2005, for a discussion and parameterization of the beta distribution). These settings

correspond to a large amount of individual differences on all parameters.
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Figure Captions

Figure 1. The effect of variance in the unequal-variance signal detection model with

normal distributions. A. The solid line shows a studied-item distribution with equal

variance to the new-item distribution; the dashed line shows unequal variances. B.

Corresponding ROC curves. The solid line (equal variance) is symmetric around the

negative diagonal while the dashed line (unequal variance) is asymmetric. The negative

diagonal is shown as a dotted line. C. Corresponding z-ROCs curves are straight lines

with slopes reflecting the ratio of standard deviations.

Figure 2. Response-category distributions from Mickes, Wixted and Wais (2007),

Experiment 1. The standard deviation for studied items (solid bars) is 20% greater than

that for new items (hatched bars). Figure adapted from Mickes et al., p. 860; permission

pending.

Figure 3. Latent strength distributions and corresponding ROC and z-ROC plots. The

first three panels (A-C) yield exactly identical ROC and z-ROC curves even though the

relationship of standard deviation differs. A. Normal distributions with unequal variance.

B. Log-normal distributions. C. Inverse probit transforms of unequal-variance normals

(see text for details). D. Uniform distributions. The ROC curves are discriminable from

normal distribution ROC curves. E. Gamma distributions. The ROC curves closely

mimic but are not exactly identical to normal-distribution ROC curves.

Figure 4. Criteria placement determines standard deviation ratio. A. The response

category mass is more concentrated in a few categories for new items relative to studied

ones. The resulting response-category standard deviations are larger for studied than for

new items. B. The response category mass is more concentrated for studied items relative

to new ones resulting in the reciprocal standard deviation ratio. Figure is adapted from
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Mickes, Wixted, and Wais, 2007, p. 862; permission pending.

Figure 5. Equivalent accounts of MWW’s data. A. An unequal-variance account. B. An

equal-variance account. B. Resulting response-category distributions are exactly identical

for both accounts.

Figure 6. ROC domiance (left column) and a violation thereof (right column). A, D.

Strenth distributions for new items (solid) and for studied items in Condition 1 (dashed)

and Condition 2 (dash-dotted). B, E. Cumulative probability distribution functions of

studied-item strength distributions. C, F. Resulting ROC curves.
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Comment on Mickes et al., Figure 4
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Comment on Mickes et al., Figure 5
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Comment on Mickes et al., Figure 6
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