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a b s t r a c t

Bayes factors have been advocated as superior to p-values for assessing statistical evidence in data.
Despite the advantages of Bayes factors and the drawbacks of p-values, inference by p-values is still
nearly ubiquitous. One impediment to the adoption of Bayes factors is a lack of practical development,
particularly a lack of ready-to-use formulas and algorithms. In this paper, we discuss and expand a set
of default Bayes factor tests for ANOVA designs. These tests are based on multivariate generalizations of
Cauchy priors on standardized effects, and have the desirable properties of being invariant with respect
to linear transformations of measurement units. Moreover, these Bayes factors are computationally
convenient, and straightforward sampling algorithms are provided.We covermodels with fixed, random,
and mixed effects, including random interactions, and do so for within-subject, between-subject, and
mixed designs. We extend the discussion to regression models with continuous covariates. We also
discuss how these Bayes factors may be applied in nonlinear settings, and show how they are useful in
differentiating between the power law and the exponential law of skill acquisition. In sum, the current
development makes the computation of Bayes factors straightforward for the vast majority of designs in
experimental psychology.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Psychological scientists routinely use data to inform theory. It
is common to report p-values from t-tests and F-tests as evidence
favoring certain theoretical positions and disfavoring others. There
are a number of critiques of the use of p-values as evidence, and
we join a growing chorus of researchers who advocate the Bayes
factor as a measure of evidence for competing positions (Edwards,
Lindman, & Savage, 1963; Gallistel, 2009; Kass, 1993; Myung &
Pitt, 1997; Raftery, 1995; Rouder, Speckman, Sun,Morey, & Iverson,
2009;Wagenmakers, 2007). Even thoughmany of us are convinced
that Bayes factor is intellectually more appealing that inference
by p-values, there is a pronounced lack of detailed development
of Bayes factors for real-world experimental designs common in
psychological science. Perhaps the problem can be illustrated by
a recent experience of the first author. After giving a colloquium
talk comparing Bayes factors to p-values, he was approached by
an excited colleague asking for help computing a Bayes factor for
a run-of-the-mill three-way ANOVA design. At the time, the first
author did not know how to compute this Bayes factor. After all,
there were no books that covered it, and the computation was not
built into any commonly-used software.
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Although the Bayes factor is conceptually straightforward, the
computation requires a specification of priors over all parameters
and an integration of the likelihood with respect to these priors.
Useful priors should exhibit two general properties. First, they
should be judiciously chosen because the resulting Bayes factors
depends to some degree on the prior. Second, they should
be computationally convenient so that the integration of the
likelihood is stable and relatively fast. Showing that the priors are
judicious and convenient entails much development. Substantive
researchers typically have neither the skills nor the time to develop
Bayes factors for their own choice of priors. To help mitigate this
problem, we provide default priors and associated Bayes factors
for common research designs. These default priors are general,
broadly applicable, computationally convenient, and lead to Bayes
factors that have desirable theoretical properties. The defaults
priors may not be the best choice in all circumstances, but they
are reasonable in most.

The topic in this paper is the development of default Bayes
factors for the linear model underlying ANOVA and regression.
In experimental psychology there is a distinction between linear
models, which are used to assess the effects of manipulations,
and domain-specific models of psychological processes. Linear
models are simple and broadly applicable, whereas processmodels
are typically nonlinear, complex, and targeted to explore specific
phenomena, processes, or paradigms. In many cases, an ultimate
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goal is the development of Bayes factor methods for comparing
competing process models. Given this distinction and the appeal
of process models, it may seem strange that the majority of the
development here is for linear models. There are three advantages
to this development. First, ANOVA and regression are still the
most popular tests in experimental psychology. Developing Bayes
factors for these models is a necessary precursor for widespread
adoption of the method. In this paper we provide development
for many ANOVA designs, including within-subject, between-
subject and mixed designs. Second, many nonlinear models have
linear subcomponents. Linear subcomponents may be used to
account for nuisance variation in the sampling of participants
or items. For example, Pratte and Rouder (2011) fit Yonelinas’
dual process recognition-memorymodel (Yonelinas, 1999) to real-
world recognition-memory data where each observation comes
from a unique cross of people and items. To fit the model, Pratte
and Rouder placed additive linear models on critical mnemonic
parameters that incorporated people and items as additive random
effects. In cases such as this, development of Bayes factors for
inferencewith linearmodels is a natural precursor to development
for nonlinearmodels. Third, the priors suggested heremay transfer
well to nonlinear cases. We provide an example of this transfer by
developing Bayes factors to test between the power law and the
exponential law of skill acquisition.

This paper is organized as follows. In thenext section,we review
common critiques of null hypothesis significance testing, which
lead naturally to consideration of the Bayes factor. In Section 3,
the Bayes factor is presented, along with a discussion of how
it should be interpreted when assessing the evidence from data
for competing positions. Following this discussion, we discuss
the properties of good default priors, and provide default priors
for the one-sample case. These existing default priors are then
generalized for several effects in Sections 5 and 6. In Sections 7 and
8, we present Bayes factors for one-way and multi-way ANOVA,
respectively, for both random and fixed effects. In Section 9, we
discuss how within-subject, between-subject and mixed designs
may be analyzed. In Section 10 we provide an example from
linguistics that is known to be particularly problematic. In
linguistic designs, both items and participants should be treated
simultaneously as randomeffects, and failure to do so substantially
affects the quality of inference (Clark, 1973). We show how this
treatment may be accomplished in a straightforward fashion
with the developed Bayes factor methodology. Sections 11–14
provide discussion about the large-sample properties of the Bayes
factors, alternative choices for priors, solutions for regression
designs, and a discussion of computational issues, respectively. In
Section 15, we discuss how the developed priors may be extended
for nonlinear cases, and provide an example in assessing learning
curves.

2. Critiques of significance testing

It has often been noted that there is a fundamental tension
between null hypothesis significance testing and the goals of
science. On the one hand, researchers seek simplicity or parsimony
to explain target phenomena. An example of such simplicity
comes from the work of Gilovich, Vallone, and Tversky (1985),
who assessed whether basketball shooters display hot and cold
streaks in which the outcome of one shot attempt affects the
outcome of subsequent ones. They concluded that there was no
such dependency, which is a conclusion in favor of simplicity over
complexity. In null hypothesis significance tests, the simplermodel
which serve as nulls may only be rejected and never affirmed.
Hence, researchers using significance testing find themselves on
the ‘‘wrong side’’ of the null hypothesis whenever they argue for
the null hypothesis. If the null is true, the best case outcome of
a significance test is a statement about a lack of evidence for an
effect. It would be desirable to state positive evidence for a lack of
an effect.

Being on the wrong side of the null is not rare. Other examples
include tests of subliminal perception (perception must be shown
to be at chance levels, e.g., Dehaene et al., 1998; Murphy & Zajonc,
1993), expectancies of an equivalence of performance across group
membership (such as gender, e.g., Shibley Hyde, 2005), or assess-
ment of a lack of interaction between factors (e.g., Sternberg, 1969).
Additionally, models that predict stable relationships, such as the
Fechner–Weber Law,1 serve as null hypotheses. Researchers who
test strong theoretical positions that predict specified invariances
or regularities in data are typically on the wrong side of the null.
From a theoretical point of view, being on the wrong side of the
null is an enviable position: the goal of scientific theory is often to
model or explain observed invariances. Testing strong invariances
often indicates a high level of theoretical sophistication. From a
practical point of view, however, being on the wrong side of the
null presents statistical difficulties. This tension, that null hypothe-
ses are theoretically desirable yet are impossible to support by sig-
nificance testing, has been noted repeatedly (Gallistel, 2009; Kass,
1993; Raftery, 1995; Rouder et al., 2009).

The asymmetry in significance testing in which the null may
be rejected but not supported is a staple of introductory statistics
courses. Yet, it has a subtle but pervasive implication that is often
overlooked: significance tests overstate the case against the null
(Berger & Berry, 1988; Edwards et al., 1963; Wagenmakers, 2007).
This bias is highly problematic because it means that researchers
may reject the null without substantial evidence against it. The
following argument, adapted from Sellke, Bayarri, and Berger
(2001), demonstrates this bias. Consider the distributions of
p-values under competing hypotheses (Fig. 1(A)). If the null
hypothesis is false, then p-values tend to be small, and decrease
(in distribution) as sample size increases. The dashed line colored
green shows the distribution of p-values when the underlying
effect size is 0.2 and the sample size is 50; the dashed–dotted line
colored red shows the same when the sample size is increased to
500. The distribution of p-values under the null, however, is quite
different. Under the null, all p-values are equally likely (solid line
colored blue in Fig. 1(A)). This uniform distribution under the null
hypothesis holds regardless of sample size.

If the null is rejected by significance testing, then, presumably,
the observed data are more improbable under the null than
under some other point alternative. A reasonable measure of
evidence is the factor by which the data are more probable
under this alternative than under the null. Suppose a data set
with sample size of 50 yields a p-value in the interval between
0.04 and 0.05, which is sufficiently small by convention to reject
the null hypothesis. Fig. 1(B) shows the distributions of p-values
around this interval for the null and the alternative that the
effect size = 0.2. The probabilities that the p-value will fall in the
interval are represented by the shaded areas under the curves,
which are 0.01 and 0.04 under the null and alternative hypotheses,
respectively. The ratio is 0.04/0.01 = 4: the probability of the
observed p-value is four times more likely under the alternative
than under the null. Although such a ratio constitutes evidence
for the alternative, it is not as substantial as might be mistakenly
inferred by the fact that the p-value is less than 0.05.

Fig. 1(C) shows a similar plot for the null and alternative (effect
size = 0.2) for a large sample size of 500. For this effect size

1 The Fechner–Weber Law (Fechner, 1966; Masin, Zudini, & Antonelli, 2009)
describes how bright a flash must be to be detected against a background. If the
background has intensity I , the flash must be of intensity I(1 + θ) to be detected.
The parameter θ , theWeber fraction, is posited to remain invariant across different
background intensities.
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Fig. 1. Significance tests overstate the evidence against the null hypothesis. A. The distribution of p-values for an alternativewith effect-size of 0.2 (dashed anddashed–dotted
lines are for sample sizes of 50 and 500, respectively) and the null (solid line). B. Probability of observing a p-value between 0.04 and 0.05 for the alternative (effect size= 0.2)
and null for N = 50. The probability favors the alternative by a ratio of about 4 to 1. C. Probability of observing a p-value between 0.04 and 0.05 for the alternative (effect
size = 0.2) and null for N = 500. The probability favors the null by a factor of 10. D. The probability ratio as a function of alternative. The probability ratio is the probability
of observing a t-value of 2.51 and N = 100 given an alternative divided by the probability of observing this t-value for N = 100 given the null. The circle and square points
highlight alternatives for which the ratios favor the alternative and null, respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
and sample size, very small p-values are the norm. Let’s again
suppose we observe a p-value between 0.04 and 0.05, which leads
conventionally to a rejection of the null hypothesis. The probability
of observing this p-value under the null remains at 0.01. But
the probability of observing it under the alternative with such a
large sample size is close to 0.001. Therefore, observing a p-value
between 0.04 and 0.05 is about ten timesmore likely under the null
than under the alternative.2 This behavior of significance testing
in which researchers reject the null even though the evidence
overwhelmingly favors it is known as Lindley’s paradox (Lindley,
1957), and is a primary critique of inference by p-values in the
statistical literature.

In Fig. 1(B) and (C), we compared the evidence for the null
against an alternative in which the effect size under the alternative
was a specific value (0.2). One could ask about these probability
ratios for other effect sizes. Consider a recent study of Bem (2011),
who claims that people may feel or sense future events that
could not be known without psychic powers. In his Experiment 1,
Bem asks 100 participants to guess which of two erotic pictures
will be shown at random, and finds participants have an
accuracy of 0.531, which is significantly above the chance baseline
value of 0.50 (t(99) = 2.51; p < 0.007). Such small p-values are
conventionally interpreted as sufficient evidence to reject the null.
Fig. 1(D), solid line, shows the probability that the p-value falls
between 0.0065 and 0.0075 under a specific alternative relative

2 More generally, a p-value at any nonzero point, say 0.05, constitutes increasing
evidence for the null in the large sample-size limit.
to that under the null. These ratios vary greatly with the choice
of alternative. Alternatives that are very near the null hypothesis
of 0.5 – say, 0.525 – are preferred over the null (filled circle in
Fig. 1(D)). Alternatives further from 0.5, say 0.58 (filled square)
are definitely not preferred over the null. Note that even though
the null is rejected at p = 0.007, there is only a small range of
alternatives where the probability ratio exceeds 10, and for no
alternative does it exceed 25, much less 100 (as might naively be
inferred from a p-value less than 0.01). We see that the null may
be rejected by p-values even when the evidence for every specific
point alternative is more modest. Note that the critique that
p-values overstate the evidence is not dependent on a Bayesian
perspective, and that the probabilities and probability ratios in
Fig. 1 are used as measures of evidence within the frequentist
paradigm, where they are called likelihood ratios (Hacking, 1965;
Royall, 1997).

3. The Bayes factor

The probability ratio in Fig. 1(D) can be generalized to the Bayes
factor as follows. Let B01 denote the Bayes factor between Models
M0 and M1. For discretely distributed data,

B01 =
Pr(Data|M0)

Pr(Data|M1)
.

For continuously-distributed data, these probabilities are replaced
with probability densities. We use the term probability loosely
in the development to refer either to probability mass or to
probability density, depending on whether the data are discrete
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or continuous. We use subscripts on Bayes factors to refer to
the models begin compared, with the first and second subscript
referring to the model in the numerator and denominator,
respectively. Accordingly, the Bayes factor for the alternative
relative to the null is denoted B10, B10 = 1/B01.

When models are parameterized,

B01 =


θ∈20

Pr(Data|M0, θ)π0(θ)dθ
θ∈21

Pr(Data|M1, θ)π1(θ)dθ
,

where 20 and 21 are the parameter spaces for Models M0 and
M1, respectively, and π0 and π1 are the prior probability density
functions of the parameters for the respectivemodels. These priors
describe the researcher’s prior belief or uncertainty about the
parameters. The specification of priors is critical to defining
models, and is the point where subjective probability enters
the computation of Bayes factor. The argument for subjective
probability is made most elegantly in the psychological literature
by Edwards et al. (1963), to whom we refer the interested reader.
Readers interested in the axiomatic foundations of subjective
probability are referred to Cox (1946), De Finetti (1992), and
Jaynes (1986). The numerator and denominator are also called
the marginal likelihoods as they are the integral of the likelihood
functions with respect to the priors.

Bayes factors describe the relative probability of data under
competing positions. In Bayesian statistics, it is possible to evaluate
the relative odds of the positions themselves, conditional on the
data:
Pr(M0|Data)
Pr(M1|Data)

= B01 ×
Pr(M0)

Pr(M1)
,

where the Pr(M0|Data)/Pr(M1|Data) and Pr(M0)/Pr(M1) are
posterior and prior odds, respectively. The prior odds describe the
beliefs about the models before observing the data. The Bayes
factor, then, describes how the evidence from the data should
change beliefs. For example, a Bayes factor of B01 = 100 indicates
that posterior odds should be 100 times more favorable to the
alternative than the prior odds.

The distinction between prior odds, posterior odds and Bayes
factors provides an ideal mechanism for adding value to findings.
Researchers should report the Bayes factor, and readers can
update their own priors accordingly (Good, 1979; Jeffreys, 1961).
Sophisticated researchers may add guidance and value to their
analysis by suggesting prior odds, or ranges of prior odds. We
use prior odds to add context to our Bayes factor analysis of
Bem’s (2011) claim of extrasensory perception of future events
that cannot otherwise be known (Rouder & Morey, 2011). Our
Bayes factor analysis of Bem’s data yielded a Bayes factor of 40
in favor of an effect consistent with ESP. We cautioned readers,
however, to hold substantially unfavorable prior odds toward ESP
as there is no proposedmechanism, and its existence runs contrary
to well-established principles in physics and biology. We believe
that a Bayes factor of 40 is too small to sway readers who hold
appropriately skeptical prior odds. Of course, a Bayes factor of 40
may be more consequential in less controversial domains where
prior odds are less extreme.

Because Bayes factors measure the evidence for competing po-
sitions, they have been recommended for inference in psycho-
logical settings (an incomplete list includes Edwards et al., 1963;
Gallistel, 2009; Lee & Wagenmakers, 2005; Mulder, Klugkist, van
de Schoot, Meeus, & Hoijtink, 2009; Rouder et al., 2009; Van-
paemel, 2010; Wagenmakers, 2007). There are, however, other
Bayesian approaches to inference including Aitkin’s (1991, see Liu
and Aitkin, 2008) posterior Bayes factors, Kruschke’s (2011) use of
posterior distributions on contrasts, and Gelman and colleagues’
notion of model checking through predictive posterior p-values
(e.g., Gelman, Carlin, Stern, & Rubin, 2004). The advantages and
disadvantages of these methods remain an active and controver-
sial topic in the statistical and social-science methodological lit-
erature. Covering this literature is outside the scope of this paper,
and the interested reader is referred elsewhere: good reviews in-
clude Aitkin (1991, especially the subsequent comments), Berger
and Sellke (1987, especially the subsequent comments), Raftery
(1995), and, more recently, Gelman and Shalizi (in press). Our view
is that none of these alternative approaches offers the ability to
state evidence for invariances and effects in as convincing and as
clear a manner as does Bayes factors. Additional discussion is pro-
vided in the conclusion as well as in Morey, Romeign, and Rouder
(in press).

4. One-sample designs

4.1. Model and priors

In this section, we develop default priors for a one-sample
design as an intermediate step toward developing Bayes factors
for ANOVA designs. The development in this section will be
directly relevant throughout. In a one-sample design, there is
a single population, and the researcher’s question of interest
is whether the mean of that population is zero. An example
of a one-sample design is a pretest-intervention-posttest design
(Campbell & Stanley, 1963) in which the researcher tracks each
individual’s change between the pretest and posttest. The question
ofwhether themean intervention effect is zero is typically assessed
via consideration of a p-value from a paired-sample t-test. The
observed intervention effects are modeled as independent and
identically distributed random variables:

yi
i.i.d.
∼ Normal(µ, σ 2), i = 1, . . . ,N.

The null model, that there is no treatment effect, is given by
µ = 0. To compute a Bayes factor, we must also choose a prior
distribution for µ under the alternative. It may seem desirable
to make µ arbitrarily diffuse to approximate a state of minimal
prior knowledge. This choice, however, is unwise. Diffuse priors
imply that all values are equally plausible, including those that
are obviously implausible. For instance, under a diffuse prior, an
effect of 5% is as plausible as an effect of one million percent.
When the likelihood under the alternative is averaged over large,
implausible values, the average approaches zero. Hence, arbitrarily
diffuse priors lead to the result that the null is more probable than
the alternative regardless of the data (Lindley, 1957).

Jeffreys (1961) recommends reparameterizing the problem in
terms of effect size, which is denoted by δ, where δ = µ/σ is a
dimensionless quantity. The model may then be rewritten:
yi ∼ Normal(σδ, σ 2).

Null and alternative models differ in the choice of priors on δ:
M0 : δ = 0,
M1 : δ ∼ Cauchy,
where the Cauchy is a distribution with probability density
function

π(x) =
1

1 + x2

π
, (1)

and π in the denominator on the right-hand side is the common
mathematical constant. Additional details about the Cauchy
distribution are provided in Johnson, Kotz, and Balakrishnan
(1994).

Priors must be specified for the remaining parameter in the
model, σ 2. Fortunately, because this parameter plays an analogous
role in both M0 and M1, it is possible and desirable to place a
noninformative Jeffreys prior on σ 2:

π(σ 2) ∝
1
σ 2
.
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Fig. 2. A. Needed t-values for stating evidence for an effect as a function of sample size. The lower line shows the needed t-values for p-value of 0.05. The upper lines are
the t-values corresponding to B10 = 3, 10, 30. B. Bayes factor evidence as a function of p-value for 855 t-tests reported in 2007.
Source: Adapted fromWetzels et al. (2011).
Bayarri and Garcia-Donato (2007) call this combination of priors
the JZS priors in recognition of the contributions of Jeffreys (1961)
as well as Zellner and Siow (1980), who generalized these priors
for linear models. The resulting Bayes factor, called the JZS Bayes
factor, is

B01(t,N) =


1 +

t2
N−1

−N/2


∞

0 (1 + Ng)−1/2

1 +

t2
(1+Ng)(N−1)

−N/2
π(g)dg

, (2)

where π(g) is the probability density function of the inverse χ2

distribution with one degree of freedom:

π(g) = (2π)−1/2g−3/2e−1/(2g). (3)

The expression is convenient because the data enter only though
the test statistic t = ȳ

√
N/sy, where ȳ and sy are the sample

mean and sample standard deviation of the data, respectively.
Fortunately, the expression is computationally convenient as
the integration is across a single dimension and may be per-
formed quickly and accurately using Gaussian quadrature (Press,
Teukolsky, Vetterling, & Flannery, 1992). Rouder et al. (2009)
provide a web applet for computing the JZS Bayes factor at
http://pcl.missouri.edu/bayesfactor.

4.2. Properties of the Bayes factor

Some of the characteristic differences between inference by
Bayes factor and p-values are shown in Fig. 2. Fig. 2(A) shows the
needed t-value for stating particular levels of evidence for an effect.
Consider the line for a Bayes factor of B10 = 3, which indicates
that the data are three times more likely under the alternative
than under the null. First, note that larger t-values are needed to
maintain a B01 = 3 than are needed to maintain a p = 0.05
criterion. Second, note that as the sample size becomes large,
increasingly larger t-values are needed to maintain the same
level of evidence. The need for increasing t-values contrasts with
inference by p-values. Fig. 2(B) shows thepractical consequences of
these different characteristics. The figure summarizes the findings
of Wetzels et al. (2011), who provided p-values and JZS Bayes
factors for all 855 t-tests reported in the Journal of Experimental
Psychology: Learning, memory, and Cognition and Psychonomic
Bulletin and Review in 2007. We have plotted the results for
the 440 tests that have p-values between 0.001 and 0.15. The
plot shows that although Bayes factors and p-values rely on the
same information in the data, they are calibrated differently.
In particular, the tendency of p-values to overstate the evidence in
data against the null hypothesis is apparent. For example, a p-value
of 0.05 may correspond to as much evidence for the alternative as
for the null, and even a p-value of 0.005 hardly confers a strong
advantage for the alternative.

4.3. Desirable theoretical properties of default priors

Our goal in this paper is to develop default priors that may be
used broadly and easily. One criteria for choosing these priors is to
consider the theoretical properties of the resulting Bayes factors.
The one-sample Bayes factor in Eq. (2) has the following desirable
properties:

• Scale invariance. The value of the Bayes factor is unaffected
by multiplicative changes in the unit of measure of the
observations. For instance, if observations are in a unit of length,
the Bayes factor is the same whether the measurement is in
nanometers or light-years. This invariance comes about because
of the scale-invariant nature of the prior on σ 2 and the placing
of a prior on effect size rather than on mean (Jeffreys, 1961).

• Consistency. In the large sample limit, the Bayes factor
approaches the appropriate bound (Liang, Paulo, Molina, Clyde,
& Berger, 2008):

δ = 0 H⇒ lim
N→∞

B10(t(N),N) = 0,

δ ≠ 0 H⇒ lim
N→∞

B10(t(N),N) = ∞,

where t(N) = ȳ
√
N/sy is the t-statistic.

• Consistent in information. The Bayes factor approaches the
correct limit as t increases, e.g., limt→∞ B10(t,N) = ∞ for all
N . This last property is called consistency in information, and it
holds for the Cauchy prior on effect size, but not for a normal
prior on effect size (Jeffreys, 1961; Zellner & Siow, 1980). The
property holdswhen the prior has slowly-diminishing tails, and
serves as additional motivation for the Cauchy prior on δ.

5. Multivariate generalizations of the Cauchy

The focus of this paper is the development of default-prior
Bayes factor for ANOVA settings. In the previous development,
there was a single effect parameter, δ, on which the prior is
a Cauchy distribution. In ANOVA and regression designs, we
will posit several effect parameters, and a suitable prior for
each. There are two possible extensions of the Cauchy, and the
contrast between them is informative. The first is a straightforward

http://pcl.missouri.edu/bayesfactor
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Fig. 3. Two bivariate Cauchy distributions. For both distributions, the marginal distributions are univariate Cauchy. In the independent Cauchy distribution (left), the joint
is the product of the marginals. In the multivariate Cauchy distribution (right), there is a dependence with more joint density on effects that are similar in magnitude.
independent Cauchy prior in which the multivariate prior density
on p effects is simply the product of p univariate prior densities. Let
θ = (θ1, . . . , θp)

′ be a vector of p effects. The independent Cauchy
has a density function,

π(θ) =

p
i=1

1
(1 + θ2i )π

. (4)

A plot of a bivariate independent Cauchy prior is shown on the left
side of Fig. 3, and it is characterized by a lasso shape. The lack of
symmetry, in which there is sizable mass for large values of one
effect and small values of the other, is a natural consequence of the
fat tails of the Cauchy.

The second generalization, conventionally termed the multi-
variate Cauchy (Kotz & Nadarajah, 2004), is given by the joint prob-
ability density function

π(θ) =
Γ [(1 + p)/2]

Γ (1/2)πp/2


1 +

p
i=1
θ2i

(1+p)/2 . (5)

The marginal distribution for any one of the p dimensions is
a univariate Cauchy with density given in (1). A plot of the
bivariate case is shown on the right side of Fig. 3, and the defining
characteristic of this generalization is a specified dependence
among the effects such that they are similarly sized in magnitude.
When compared to the independent Cauchy, the multivariate
Cauchy places lessmass on the combinations of large values for one
effect and small values on the other. The result of this dependence
is a symmetric bivariate distribution, but this symmetry should not
be confused for independence.

The motivation for the multivariate Cauchy comes from the
relationship between the normal and Cauchy distributions. The
Cauchy results from amixture of normals with different variances.
Consider the following conditional model on an effect θ ,

θ |g ∼ Normal(0, g)

where g is the variance. Zellner and Siow (1980) note that if g
follows an inverse-χ2 distribution with one degree of freedom,
then the marginal distribution of θ is a univariate Cauchy. For the
multivariate case, let θ be a vector of p effects,

θ|g ∼ Normal(0, gIp),

where Ip is the identity matrix of size p. If g follows an inverse-
χ2 distribution with one degree of freedom, then the marginal
distribution of θ is the multivariate Cauchy given in (5). The
independent Cauchy may also be expressed as a mixture of
normals. Let G be a p×p diagonalmatrix with values g1, g2, . . . , gp
on the diagonal. Let

θ|G ∼ Normal(0,G),
and let each gi be distributed independently as an inverse-χ2

with a single degree of freedom. Then the marginal distribution
of θ is the independent Cauchy in (4). Both the independent
and multivariate Cauchy generalizations will be useful, and, as is
discussed, each is used to encode different sets of relations among
effects.

6. Bayes factor for ANOVA models

In this section, we provide general development for ANOVA
models. It is convenient to use matrix notation. Let y be a vector of
N observations. It is convenient to start with a linear model with p
effects:

y = µ1 + σXθ + ϵ, (6)

whereµ is a grand mean parameter, 1 is a column vector of length
N with entries of 1, θ is a column vector of standardized effect
parameters of length p, and X is a N × p design matrix. The vector
ϵ containing the error terms is a column vector of length N:

ϵ|σ 2
∼ Normal(0, σ 2I).

Note that the parameterization of the linear model in (6) differs
from more conventional presentations (e.g., McCullagh & Nelder,
1989). In (6) the effects are standardized relative to the standard
deviation of the error, and, consequently, σXθ explicitly includes
a scale factor σ .

ANOVA models have two constraints. First, the covariates are
categorical and indicate group membership. Membership may be
indicated by setting design-matrix entries to be 1 or 0, denoting
whether an observation is from a specific level of a specific factor
or not, respectively. Second, factors provide a natural hierarchy
or grouping (Gelman, 2005). It is reasonable to think a priori
that levels within a factor are exchangeable whereas levels across
factors are not. We will implement this notion of exchangeability
in our development.

Priors are needed on parameters µ, σ 2, and the vector of
standardized effects θ. As previously, we place a Jeffreys prior onµ
and σ 2:

π(µ, σ 2) =
1
σ 2
.
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For ANOVA models with categorical covariates, we assume the
following g-prior structure:
θ|G ∼ Normal(0,G), (7)
where G is a p × p diagonal matrix. A different prior, discussed
subsequently, is usedwhen the covariate is continuous rather than
categorical.

To complete the specification of the prior, the analyst needs
to choose the diagonal of G . One possible choice of priors is to
use a separate g parameter for each element of θ. In this case, the
diagonal ofG consists of g1, . . . , gp. The priors on these parameters
are

gi
i.i.d.
∼ Inverse-χ2(1), i = 1, . . . , p.

The corresponding marginal prior on θ is the independent
Cauchy distribution. The independent Cauchy prior is useful when
there is no a priori relationship among effects. Yet, in some
cases, it is more appropriate to assume that effects vary on a
similar scale, and are not arbitrarily different from one another.
In this case, the multivariate Cauchy may be more appropriate.
The multivariate Cauchy prior is implemented by setting G = gI ,
and g ∼ Inverse-χ2(1). The development of Bayes factors for this
single-g model is discussed in Bayarri and Garcia-Donato (2007).

Gelman (2005) comments that ANOVA should be viewed as a
hierarchical grouping of effects into factorswhere levelswithin but
not across factors are exchangeable. When effects share a common
g parameter, they are indeed exchangeable in that they are random
deviates from a common parent distribution in a hierarchical
structure. Hence, effects within a factor should share a common
g parameter while those across should not. For example, suppose
there are four effects, θ1, . . . , θ4 with θ1 and θ2 describing the effect
of one factor and θ3 and θ4 describing the effect of another. Because
the first two levels are exchangeable within one factor and the
second in a different factor, we may specify that the scales of the
first two effects may be more similar to each other, but may be
dissimilar to those for the last two effects. In this case, a separate
g-parameter for each factor is appropriate, e.g.,

G =

g1 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 g2

 .
In this case, the priors on g1 and g2 would be independent inverse
chi-square with one degree-of-freedom. The marginal prior on
θ in this case is two multivariate Cauchy priors, where each is
a bivariate distribution across two levels of a factor. These two
multivariate Cauchy distributions are independent of one another.
We develop Bayes factors for any combination of independent
and multivariate Cauchy distributions. Let r denote the number of
unique g parameters in G , and let g = (g1, . . . , gr), 1 ≤ r ≤ p.

Themarginal likelihood,m, for the ANOVAmodel is obtained by
integrating the likelihood against the joint prior for µ, σ 2, θ, and
g . It is not possible to express this integral across all parameters
as a closed-form expression. Fortunately, it is possible to derive a
closed-form expression for the integral across µ, σ 2, and θ,

m =


g1

· · ·


gr
Tm(g)π(g1) · · ·π(gr) dg1 · · · dgr , (8)

where Tm(g) is the likelihood integrated with respect to the joint
priors on µ, σ 2 and θ, and where π(g) is the probability density
function of an inverse-χ2 distribution with one degree of freedom
given in (3). To define Tm(g), let

P0 =
1
N
11′,

ỹ = (I − P0)y,
X̃ = (I − P0)X,
Vg = X̃ ′X̃ + G−1.
Then the integrated likelihood is

Tm(g) =
Γ ((N − 1)/2)

π (N−1)/2|G|1/2|Vg |
1/2

√
N(ỹ ′ỹ − ỹ ′X̃V−1

g X̃ ′ỹ)(N−1)/2
.

The derivation of Tm(g) is provided in the Appendix.
Bayes factors for the model in (6) may be constructed with

reference to the null model, y = µ1 + ϵ.
Using the same argument as in the Appendix, the corresponding

marginal likelihood, denotedm0, is

m0 =
0((N − 1)/2)

π (N−1)/2
√
N(y ′y − N ȳ2)(N−1)/2

,

where ȳ = 1′y/N . The Bayes factor between the model in (6) and
the null model is

B10 =


g1

· · ·


gr
S(g)π(g1) · · ·π(gr) dg1 · · · dgr (9)

where

S(g) =
1

|G|1/2|Vg |
1/2


y ′y − N ȳ2

ỹ ′ỹ − ỹ ′X̃V−1
g X̃ ′ỹ

(N−1)/2

.

Eq. (9) is used throughout for computing Bayes factors. Appropriate
choices for G and X in various ANOVA designs are discussed in
the following sections. Computational issues in evaluating (9) are
discussed in Section 14.

The proposed default prior is similar to those proposed by
Zellner and Siow (1980) and recommended for ANOVA byWetzels,
Grasman, and Wagenmakers (2012). Yet, there are two critical
differences. The Zellner–Siowprior is based on a single g parameter
whereas our prior is more flexible and allows for different g
parameters across different factors. A second critical difference is
that the Zellner–Siow prior on effect sizes has an additional scaling
term: θ|g ∼ Normal(0, g(X ′X/N)−1Ip), where (X ′X/N)−1 is this
new term. In Section 13 we discuss the meaning of this additional
term, and argue that such scaling is appropriate for continuous
covariates (regression) but inappropriate for categorical covariates
(ANOVA).

7. One-way ANOVA designs

In this section, we develop the default Bayes factor for the case
where observations are classified into one of a groups. Let α be a
vector of a effects, α = (α1, . . . , αa)

′. The corresponding model is

y = µ1 + σXαα+ ϵ. (10)

The design matrix, denoted Xα , has N rows and a columns,
and is populated by entries of one or zero that indicate group
membership. For instance, if 7 observations came from 3 groups,
with the first two observations in the first group, the next two
observations in the second group, and the last three observations
in the third group, the design matrix would be

Xα =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

 .

The model in (10) is not identifiable without additional
constraint as there are a total of a + 1 parameters that determine
the a cell means. In classical statistics, the additional constraint
reflects whether effects are treated as fixed or random. For fixed
effects, additional linear constraints are imposed, e.g.,


i αi = 0.
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For random effects, the constraint comes from considering each
effect as a sample from a common distribution, or, as discussed
previously, as exchangeable. Gelman (2005) recommends this
hierarchical approach for both fixed and random effects, and we
follow this recommendation here. Gelman also recommends that
analysts impose the usual sum-to-zero linear constraints as well,
and the difference between fixed and random effects is a matter
of interpretation but not computation. We do not take this last
recommendation. Instead, we make a sharp distinction between
treating factors as fixed and random. When factors are treated as
fixed, the usual sum-to-zero constraints are imposed. When they
are treated as random, these constraints are not imposed. As a
rule of thumb, it is appropriate to treat a factor as fixed when
they are manipulated through a few levels, and the focus is on
the difference between levels. Likewise, it is appropriate to treat
a factor as random when levels are sampled, such as the sampling
of participants from a participant pool or the sampling of words
from a language, and the focus is on generalization to all possible
levels of the factor. We consider the random effects model first as
it is more straightforward.

7.1. Random effects model

A natural specification for the random effects one-way ANOVA
model is

α | g ∼ Normal(0, gI),

where g is the variance of the random effects. The prior on g is
g ∼ Inverse-χ2(1), and the resulting marginal prior on α is the
multivariate Cauchy in (5).

Themarginal likelihood of this random-effectsmodel is given in
(8) by setting X = Xα and G = gI . The Bayes factor in (9) may be
expressed as follows. Let yij be the jth observation in the ith group,
i = 1, . . . , a, j = 1, . . . , nj; let ȳi· be the sample mean for the ith
group; and let ȳ·· be the grand samplemean. Box I, Eq. (11) provides
the Bayes factor between the model in (10) and the null given by
y = µ1 + ϵ.

If the design is balanced, then (11) reduces to

B10 =


g
(1 + gn)−(a−1)/2

×


1 −

R2

(1 + gn)/gn

−(N−1)/2

π(g) dg, (12)

where R2 is the unadjusted proportion of variance accounted for by
the model3 and n = n1 = · · · = na. The one-dimensional integral
in (11) and (12)maybe conveniently and accurately evaluatedwith
Gaussian quadrature.

7.2. Fixed effects models

In one-wayANOVA, the fixed effect constraint is


i αi = 0. One
approach is to consider only the first a − 1 effects and set the last
one to αa = −

a−1
i=1 αi. A drawback of this approach, however,

is that the choice of eliminated effect is arbitrary. Moreover, the
marginal prior on the eliminated effect cell mean is more diffuse
than on the others.

A better approach to implementing the sum-to-zero constraint
is to project the space of a dimensions into a space of dimension

3 The R2 statistic is

R2
=


i
ni(ȳi· − ȳ··)

2
i


j
(yij − ȳ··)2

.

a − 1 with the property that the marginal prior on all a effects
is identical. The constraint that


αi = 0 may be implemented

by placing a prior with negative correlation across the effects. A
suitable choice for the covariance matrix across the effects is

6a = Ia − Ja/a
where Ia is the identity matrix (of size a) and Ja is a square matrix
of size a with entries 1.0. For example, if a = 3, the resulting
covariance matrix is

63 =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3


.

The above covariance matrix is not full rank, as it captures the side
condition on α. Consequently, 6a may be decomposed as

6a = QaIa−1Q ′

a

where Qa is an a× (a− 1)matrix of the a− 1 eigenvectors of unit
length corresponding to the nonzero eigenvalues of6a, and Ia−1 is
an identity matrix of size a− 1. The new parameter vector of a− 1
effects, α∗, is defined by

α∗
= Q ′

aα.

Inspection of these matrices is helpful in understanding the nature
of parameter constraint. For two groups,

Q ′

2 =
√

2/2, −
√
2/2


.

For five groups,

Q ′

5 =

0.89 −0.22 −0.22 −0.22 −0.22
0 0.87 −0.29 −0.29 −0.29
0 0 0.82 −0.41 −0.41
0 0 0 0.71 −0.71

 .
Note that Qa defines an orthonormal set of contrasts that identify
the a − 1 parameters.

Let X∗
α denote the N × (a − 1) design matrix that maps α∗ into

observations:

X∗

α = XαQa. (13)

With this full-rank parameterization, the fixed-effect model is

y = µ1 + σX∗

αα
∗
+ ϵ. (14)

A prior is needed on α∗, and we use a multivariate Cauchy:

α∗
|g ∼ Normal(0a−1, gIa−1), g ∼ Inverse-χ2(1)

where the 0 column vector is of length a − 1. This prior maintains
a notion of exchangeability, though the exchangeability is on the
differences between effects rather than the effects themselves.

The Bayes factor is calculated from (9) by setting X = X∗
α and

setting G = gIa−1. This Bayes factor will, in general, be different
from the random-effects Bayes factor in (11). If the design is
balanced, however, it can be shown that the Bayes factor reduces
to the same expression as that for the random-effects in (12).
This equivalence of random-effect and fixed-effect Bayes factors
in balanced one-way designs is analogous to the equivalence of
F-tests for one-way, balanced designs. Whereas most researchers
use balanced designs, consideration of fixed or random effects is
not critical in this case. There are, however, important differences
for multiple factor designs.

In ANOVA designs, researchers are sometimes concerned about
additional contrasts, such as whether any two levels differ. For
instance suppose a factor has three levels and the main-effect
Bayes factor indicates that the full model is preferred to the null
model. Then, three intermediate models may be proposed where
any two levels equal each other. Each of these models can be
implemented with a simple two-column design matrix and tested
with the abovemethodology. The resulting pattern of Bayes factors
across these models, as well as that across the full model, may be
compared in analysis.
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1)
B10 =


g
K(n, g)



i


j


yij − ȳi

2
+

1
g


i
ciȳi2 −


i
ciȳi

2
i
ci



i


j


yij − ȳ

2


−(N−1)/2

π(g) dg (1

where n = (n1, . . . , na)
′,

N =


i

ni,

ci =
ni

ni + 1/g
,

and K(n, g) =
√
N



i
1/(1 + gni)

i
ni/(1 + gni)

1/2

.

Box I.
8. Multi-way ANOVA

In many applications, researchers employ factorial designs in
which they seek to assess main effects and interactions. In this
section, we develop the Bayes factor for multiple factors. Although
the following developments generalize seamlessly to any number
of factors, we will focus on the two-factor case for concreteness.
Let a and b denote the number of levels for the first and second
factors, respectively. Let α be a vector of a standardized effects for
the first factor, let β be a vector of b standardized effects for the
second factor, and let γ be a vector of a×b standardized interaction
effects. A full model may be given by

Mf : y = µ1 + σ

Xαα+ Xββ + Xγ γ


+ ϵ. (15)

Design matrices Xα,Xβ and Xγ describe how effect parameters
map onto observations. For example, if a = 2, b = 2, and there
is one replicate per cell, the design matrices are

Xα =

1 0
1 0
0 1
0 1

 , Xβ =

1 0
0 1
1 0
0 1

 ,

Xγ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
For balanced designs with n replicates per cell, these design
matrices are given compactly by

Xα = Ia ⊗ 1b×n, Xβ = 1a ⊗ Ib ⊗ 1n, Xγ = Ia×b ⊗ 1n,

where subscripts on 1 and I denote the sizes, and ⊗ denotes a
Kronecker product (Eves, 1980).

In factorial designs, researchers are interested in an array of
models that encode constraints on main effects and interactions.
In addition to the full model, Mf , there are seven submodels of the
full model for the two-way design:

Mα+β : y = µ1 + σ

Xαα+ Xββ


+ ϵ.

Mα+γ : y = µ1 + σ

Xαα+ Xγ γ


+ ϵ.

Mβ+γ : y = µ1 + σ

Xββ + Xγ γ


+ ϵ.

Mα : y = µ1 + σXαα+ ϵ,

Mβ : y = µ1 + σXββ + ϵ,

Mγ : y = µ1 + σXγ γ + ϵ,

as well as the null model,

M0 : y = µ1 + ϵ.
8.1. Fixed, random, and mixed effects

Different models of effects may be implemented through the
design matrices, as we discuss in the following sections.

8.1.1. Random effects
Consider first the case in which both factors are treated

as random effects, and consequently, the interaction terms are
random effects as well. We recommend the following prior
structure with three separate g parameters for α,β, and γ:

α | gα ∼ Normal(0, gαIa), (16)
β | gβ ∼ Normal(0, gβ Ib),
γ | gγ ∼ Normal(0, gγ Ia×b),

with gk
i.i.d.
∼ Inverse-χ2(1) for k = α, β, γ . Note here that the

prior on standardized effects is the product of three independent,
multivariate Cauchy distributions. Within a factor, the levels are
related through a common g parameter. Yet, there are separate g
parameters across factors (and their interactions), and this indi-
cates that the factors themselves are unrelated. The Bayes factor for
the fullmodel relative to the nullmodel, denoted Bf ,0, is given in (9)
with X = (Xα,Xβ ,Xγ ) and G = diag(gα1′

a, gβ1
′

b, gγ 1
′

ab). Compu-
tational approaches to performing the resulting three-dimensional
integral are discussed in Section 14. Bayes factors for the submod-
els are given analogously.

8.1.2. Fixed effect models
Consider the casewhere both factors are treated as fixed effects,

and, consequently, the interaction is fixed as well. The usual side
conditions on fixed effects are

i

αi = 0, (17)
j

βj = 0,
i

γij = 0,
j

γij = 0.

The side conditions on main effects each impose one linear
constraint; the side condition on interactions imposes I + J − 1
linear constraints.

To capture these side conditions, it is helpful to specify a matrix
operation for the construction of interaction design matrices from
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Fig. 4. Median Bayes factor from simulated data. I. Data generated from the null model. II. Data generated with main effects in orientation. True effect-size values for
orientation were 0.2, 0.5, and 1. III. Same as previous simulation, except there was a true main effect of frequency as well (true orientation effect-size values of 0.2, 0.5, and
1; true frequency effect-size value of 0.4). IV. Data generated with equal-sized true main effects in orientation and frequency. V. Data generated with main effects of both
factors (true effect-size values of 0.4) and an interaction (true effect size values of 0.2 and 0.5). Orientation and frequency are modeled as fixed effects.
main effect ones. Box II shows the definition of this matrix
operator, denoted ⊙. The design matrices of interactions in
factorial designs are given by

Xγ = Xα ⊙ Xβ .

The following full model captures the side conditions in (17):

y = µ1 + σ

X∗

αα
∗
+ X∗

ββ
∗
+ X∗∗

γ γ
∗∗

+ ϵ.

Main-effects parameter vectors α∗ and β∗ are of length a − 1
and b − 1, respectively, and the corresponding respective design
matrices X∗

α and X∗

β are derived from the centering projection
analogously to (13). The interaction parameter vector γ∗∗ is of
length (a−1)(b−1), and the corresponding designmatrix is given
by

X∗∗

γ = X∗

α ⊙ X∗

β .

The use of two asterisks in the superscript on interaction
parameters and design matrices indicates that there are separate
sum-to-zero constraints on both rows and columns in the matrix
representation of interaction parameters. Prior specification of α∗,
β∗, and γ∗∗ is analogous to (16). Moreover, all submodels are
defined as the appropriate restriction on this full model.

8.1.3. Mixed interactions
The development extends in a straightforward manner to

mixed interactions. For example, suppose the first factor is fixed
and the second is random. The model is given by

y = µ1 + σ

X∗

αα
∗
+ Xββ + X∗·

γ γ
∗·

+ ϵ

where X∗·
γ = X∗

α ⊙Xβ is a designmatrix with (a−1)b columns and
γ∗· is an interaction vector of (a− 1)b effects which obeys the side
constraint on row sums of interactions but not on column sums.
This parameterization of mixed interactions is the same as in the
classical Cornfield–Tukey mixed model (Cornfield & Tukey, 1956;
Neter, Kutner, Wasserman, & Nachtschiem, 1996). Submodels are
defined by various restrictions of this full model.

8.2. Assessment of main effects and interactions

Conventional ANOVA is a top-down approach in which the
total variability is partitioned into main effects and interactions,
and that which is residual. Each main effect and interaction
is separately assessed through a comparison of the accounted
variation relative to an appropriate error term. In the two-way
case, researchers are interested in three comparisons: the two
main-effect comparisons and the interaction. Here,we recommend
several useful Bayes factor model comparisons.

Assessing interactions is the most straightforward, and a
top-down approach that contrasts the performance of the full
model to one without interactions is appropriate. We denote the
corresponding Bayes factor by Bf ,α+β .4 If the restriction without
the target interaction is preferred to the full model with it, the
interaction term is unnecessary to account for the data. Then,
the appropriate Bayes factor to test the main effects of Factor 1
and Factor 2 are Bf ,β+γ and Bf ,α+γ , respectively, and the effect
in question is preferred if the full model has higher marginal
likelihood than the restriction without it. In some contexts, the
analyst may be interested whether there is any effect of a factor
rather than just a main effect. In this case, corresponding Bayes
factor comparisons Bf ,β and Bf ,α are appropriate for assessing
Factor 1 and Factor 2, respectively.

We ran a small-scale set of simulations to assess the perfor-
mance of these three Bayes factor contrasts. To make the situation
concrete, we assumed that participants responded to the onset of
Gabor patches that varied in orientation and frequency, modeled
as fixed effects. There were 2 levels per factor and 10 replicates per
cell in a simulated data set. We simulated data from 12 different
true models, which comprised select combinations of main effects
and interactions, and for each of these truemodels, 1000 simulated
data sets were analyzed. Median Bayes factors across these 1000
sets formain effects and interactions are shown in Fig. 4. In Simula-
tion I, far left panel, the null model serves as the generating model,
and the Bayes factors for main effects and interaction correctly fa-
vor the null. In Simulation II, next panel, there is a main effect of
orientation, that is, Mα serves as the generating model. The three
different effect size values5 of orientation are shown (0.2, 0.5, and
1). Median Bayes factor for the main effect of orientation tracks
with effect size, and the median Bayes factors for the interaction

4 The Bayes factor may be computed by noting that Bf ,α+β = Bf ,0/Bα+β,0 . Both
Bf ,0 and Bα+β,0 are given in (9) with appropriate choices for X and G .
5 An effect size of 0.2 for a fixed factor with two levels means that the effect for

both levels is 0.2 standardized units from the mean.
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Let S and T be defined as

S =

s11 · · · s1m
...

...
...

sr1 · · · srm

 , T =

t11 · · · t1n
...

...
...

tr1 · · · trn

 ,
The matrix operator ⊙ is defined as

S ⊙ T =

s11t11 s11t12 · · · s11t1n s12t11 · · · s12t1n · · · s1mt1n
...

...
...

...
...

...
...

...
...

sr1tr1 sr1tr2 · · · sr1trn sr2tr1 · · · sr2trn · · · srmtrn

 .
Box II.
Fig. 5. Left: hypothetical response times (sec) to Gabor gratings that vary in orientation (vertical vs. horizontal) and frequency (low vs. high) in a 2×2 design. Right: resulting
Bayes factor for seven models when effects are modeled as fixed, mixed, or random.
and main effect of frequency favor a null effect. In Simulation III
there are main effects of both orientation and frequency, with the
main effect of orientation manipulated (0.2, 0.5, 1) and the main
effect of frequency held constant at 0.4. As can be seen, the Bayes
factors track the true effect sizes well. Simulations IV and V show
the case that there are twomain effects of the same size, andwhen
there are main effects and interactions, respectively. In all cases,
the Bayes factor performs as expected. One desirable property that
is evident is an independence or orthogonality. The Bayes factor for
one comparison, say the main effect of orientation, does not de-
pend on the true values of the other factors and interactions. This
orthogonality mirrors that in conventional ANOVA analysis, and a
necessary condition for it is separate g parameters across main ef-
fects and interactions.

8.3. A note on fixed, random, and mixed interactions

There is a trend in Bayesian analysis to treat effects as random in
ANOVA designs. For one-way ANOVA, the Bayes factor for balanced
designs is the same whether the effects are modeled as fixed or
random lending credence to the notion that constraint from priors
is in some abstract way comparable to explicitly imposing a sum-
to-zero constraint. Unfortunately, this general comparability does
not hold for interactions. Consider the 2×2 factorial case in which
in the random-effects model there are 4 interaction effects, and
the constraint comes from the prior in which they are treated as
exchangeable. Contrast this to the fixed-effect model where three
sum-to-zero constraints are imposed and there is subsequently
one interaction parameter. We explore how imposing the sum-to-
zero constraints affects the Bayes factor through evaluation of an
example.

The table in Fig. 5 shows hypothetical data from Model Mα in
which there are only orientation effects. Classically, the F-value
for orientation effect in the fixed-effects model is obtained by
dividing MSA by MSE , and it evaluates to F(1, 36) = 17.0, which,
because the degrees-of-freedom in the error term is high, results
in a small p-value of 0.0002. For the random-effects model, the
F-value is obtained by dividing MSA by MSI , the interaction term,
and it evaluates to F(1, 1) = 28.3. Although this F-value is high,
the corresponding p-value is 0.12 because there is a single degree-
of-freedom in the error term. In classical statistics, evidence for an
orientation effect in this example is more easily detectedwhen the
effects aremodeled as fixed rather than random. Thismakes sense:
it should be easier to conclude that two levels differ than it is to
conclude that all possible levels differ when there are only two in
a design.

Our default Bayes factors follow these classical patterns. Fig. 5
shows the resulting Bayes factors for the three contrasts and
for four different types of effects models. In the first model,
darkest bars, the orientation and frequency are both considered
fixed. In the second model, orientation is fixed and frequency
is random, and their interaction is mixed with 2 parameters
(dark gray bars). Included too is the complementary model (light
gray bars) with random orientation and fixed frequency, and
the random effects model (white bars), which has 4 interaction
parameters. For all four models, there is evidence for a null
frequency effect and for a null interaction. These results are
appropriate as the data were generated without these effects.
There is a discrepancy across the models in the assessment of
the orientation main effect. If frequency is considered fixed, the
resulting Bayes factors yield strong evidence for an orientation
effect; conversely, if frequency is considered random, the evidence
is equivocal. Whereas the data are generated with a strong
orientation effect, these random frequency models are hiding the
underlying structure. The reason they do so is that the random
interactions are heavily parameterized. It this case, this heavy
parameterization leads to interactions so flexible that they may
account for main effect patterns.

This example highlights the usefulness of fixed-effects model-
ing. In many cases, random-effect models are inappropriate be-
cause they are too flexible for the experimental design and the
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questions of interest. Because of this increased flexibility, random
andmixed interactions should be used with great care. Overall, we
think the trend on Bayesian analysis to use random effects as a
default is unhelpful and analysts will be served better by careful
consideration of context in deciding between fixed and random
effects. We think the prevailing rule-of-thumb that sum-to-zero
constraints should be imposed for manipulated variables and not
imposed for sampled levels is a good one.

9. Within-subject and mixed designs

The above development is appropriate to what are commonly
referred to as between-subject designs, in which participants are
nested within factors. Each participant performs under a single,
specific combination of factors, and systematic variability across
participants enters into the residual error terms. In within-subject
designs, in contrast, participants are crossed with the levels of
the factors, and each participant performs in all combinations
of the factors. It is reasonable to expect that participants
vary substantially, and this variation induces a correlation in
performance across conditions. A common approach is to include
a separate factor for participant effects. Consider, for example, an
experiment in which each participant identifies Gabor gratings at
varying orientations. In the psychological literature, this design is
commonly referred to as a one-way within-subject design, where
the one-way refers to the stimulus variable, orientation, and the
within-subject refers to the fact that the levels are crossed with
participants. Even though this design is called one-way, it is in fact
a two-factor design with factors for participants and orientation.
Likewise, what is commonly termed a two-way within-subject
design has three factors: one participant factor and two stimulus
factors.

The one-way within-subject design may be modeled with a
two-way ANOVA model. The following is appropriate when the
stimulus variable is modeled as a fixed effect:

Mf : y = µ1 + σ

Xαα+ X∗

ββ
∗
+ X ·∗

γ γ
·∗

+ ϵ, (18)

where α and β∗ are parameter vectors that describe the effect
of participants and the levels of the stimulus factor, respectively.
Included for full generality is the mixed interaction term γ ·∗.
This term may be estimated if the design is replicated, that is,
each participant yields several observations in each condition. In
repeated measures designs, in which participants yield a single
observation in each condition, it is not possible to distinguish the
participants-by-treatment interaction term from the residual. In
this case, the appropriate full model is Mα+β∗ .

Mixed designs occur when some factors are manipulated in
a within participant manner and others are manipulated in a
between participants manner. These designs may be treated
analogously to within-subject designs. In mixed designs, the
design matrix on participant parameters codes which factors
are manipulated in a within-subject manner and which are
manipulated in a between-subjects manner.

10. Theoretical properties of Bayes factors with multiple g-
parameter priors

In Section 4.3, we listed three desirable properties of the one-
sample Bayes factor with a g-prior. These were scale invariance,
consistency and consistency in information. Some of these properties
are known to apply to the Bayes factor in (9). Scale invariance,
for example, is assured because there is a scale-invariant prior on
(µ, σ 2), and the model is parameterized in terms of standardized
effects rather than unstandardized effects.

Consistency is a more complicated concept in a factorial setting
because there are multiple large-sample limits to be considered.
Take the case of the two-factor design in which the sample size,
N , is the product of three quantities: the number of levels of the
first and second factors (a, b), and the number of replicates in a
cell r,N = abr . The sample size may be increased to the limit by
increasing any of these three quantities. Perhaps the simplest
case is when r , the number of replicates in a cell, is increased
to the limit while a and b are held constant. In this case, the
model dimensionality is held constant as sample size increases. A
more difficult case is when r is held constant and the number of
levels of a factor is increase; i.e., when say a is increased. In this
case, increases in sample size correspond to an increase in model
dimensionality. This second case is quite important for within-
subject designs. In these designs, researchers increase sample
size by adding additional subjects rather than by increasing the
replicates per subject. Adding additional subjects entails adding
more levels, that is, increasing model dimensionality. Hence, it is
important to show consistency in the large-model-dimension limit
too.

Min (2011) studied the consistency properties of amore general
class of priors in various large sample limits. He proved two facts of
relevant here. First, if r is increased and the model dimensionality
(a, b) is held constant, then Bayes factor (9) is consistent; that is, it
approaches zero when the null holds and ∞ when the specified
model holds. Second, the Bayes factor is consistent in the large
a or large b limit when r is held constant. Therefore, researchers
may usemultiple g-priors in between-subject, within-subject, and
mixed designs with assurance of correct limiting behavior.

To our knowledge, consistency in information, which refers
to the correct limit as the R2 approaches zero or 1, has not
been studied in multiple g-parameter priors. It is known to hold
for single-g parameter priors (Liang et al., 2008). Consistency in
information is not as critical to us as consistency in cell replicates
or inmodel dimensionality, and the lack of theoretical work on this
particular type of consistency should not dissuade adoption.

11. Inference with multiple random effects: memory and
language

Our development of default Bayes factors for ANOVA is
exceedingly general. In this section, we illustrate the generality
with an application to memory and language studies. Inference
is more complicated in memory and language because in typical
designs, researchers sample items from a corpus as well as people
from a participant pool. The goal is to generalize the results back to
these corpra and populations. Consider a researcher whowishes to
know if nouns are read at a different speed than verbs. Suppose the
researcher samples 25nouns and25 verbs, and asks 50participants
to read each of these 50 words. In this case, there are three factors.
The one of substantive interest is the part-of-speech factor (noun
vs. verb), which may be modeled as a fixed effect. A second factor
is an item factor. Individual nouns and verbs are assumed to
have their own systematic effects above and beyond their part-
of-speech mean. The final factor is the effect of participants, and
each participant is assumed to have his or her own systematic
effect.

Inmany language studies, and in almost all memory studies, re-
searchers average the results across items to construct participant-
level scores. These participant-level scores are then submitted to
a conventional ANOVA analysis. In the current example, a mean
noun and verb reading time can be tabulated for each participant,
and these scores may be submitted to a paired t-test to assess the
part-of-speech effect. This averaging approach, however, is known
to be flawedbecause the Type I error ratewill be inflated over nom-
inal values. Clark (1973) noted that averaging treats items as fixed
rather than as random effects, and the correlation in performance
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Fig. 6. Simulation of a word-naming experiment with systematic variation
across participants and items. Data were generated from a null model in which
there was no part-of-speech effect. The p-values are obtained from a t-test on
participant-specific noun and verb means. The distribution of these p-values
deviates substantially from a uniform, with an over-representation of small values.
The Bayes factor are from the same data, but the model includes crossed random
effects of people and items. The Bayes factor favors the no part-of-speech effect
null model.

across items leads to downward bias in the estimate of residual
variability.

To demonstrate this downward bias, we performed a small
simulation in which there is no true part-of-speech effect.
Participants and items varied, and their individual effects are
normally distributed with a standard deviation of 100 ms. The
residual error distribution has a standard deviation of 150 ms.
We performed 100 replicates in the simulation to explore the
distribution of p-values, which is shown in the left box plot in
Fig. 6. If there were no distortions due to averaging, then these
p-values should be uniformly distributed. The p-values deviate
from a uniform distribution, and there is a dramatic over-
representation of small values. For a nominal 0.05 level, the
observed Type I error rate is 0.34.

Fortunately, researchers in linguistics are well aware of the
problem of inflated Type I error rates when items are aggregated.
One recommended solution is to specify mixed linear models
that treat people and items as crossed random effects (Baayen,
Tweedie, & Schreuder, 2002). Mixed models may be analyzed in
many popular packages including Proc Mixed in SAS, SPSS, and
NMLE in R. These more advanced models provide suitable Type I
error control, that is, if there truly is no part-of-speech effect, the
resulting p-values are uniformly distributed. Surprisingly, memory
researchers have not adopted crossed random-effects modeling as
readily as their linguistics colleagues (cf., Pratte, Rouder, & Morey,
2010).

We show here Bayes factors for crossed-random effects may be
conveniently calculated.We implemented the followingmodels to
assess the part-of-speech effect for the above example in which 50
participants read 25 nouns and 25 verbs. In this case, there are a
total of N = 50 × 50 = 2500 observations. Let X∗

α be a 2500 × 1
design matrix that indicates whether the item is a noun or verb,
and let Xλ and Xτ be 2500 × 50 design matrices that map people
and items into observations respectively. The full model is

M1 : y = µ1 + σ

X∗

αα
∗
+ Xλλ+ Xττ


+ ϵ, (19)

where α∗ is a part-of-speech effect, and λ and τ are person and
item random effects, respectively. The null model to assess part-
of-speech effects is

M0 : y = µ1 + σ (Xλλ+ Xττ)+ ϵ. (20)
The Bayes factor for the twomodels is straightforwardly computed
via (9), and the results are shown in the right box plot in Fig. 6. The
Bayes factor for all 100 replicates of the experiment favor the null
model between a factor of 6 and 12. This result is desirable as the
data were simulated with no part-of-speech effect. Note here how
researchers can state positive evidence for a lack of an effect.

12. Alternative g-priors

In our development, we use separate g parameters for each
factor. There are obvious alternatives. One is to use a single g
parameter for all effects regardless of factor; a second is to use a
separate g-prior for each effect. In this section, we compare our
choice to these alternatives.

12.1. A single g-prior

In the single-g prior, there is one g parameter for all main
effects and interactions, i.e., G = gI . Wetzels et al. (2012), for
example, discuss this approach. Clearly, a single-g prior is
more computationally efficient as the integral in (9) is single-
dimensional for all models. Nonetheless, we think the single-g
prior is inferior to themultiple-g prior for general use. When there
is one g , the pattern of effects on one factor calibrates the prior on
the others through the single g . For instance, take the case of two
researchers who wish to test the effect of part-of-speech (noun vs.
verb) on word reading times. The first researcher uses one fixed
effect, part-of-speech, and presents each word for 300 ms. The
second researcher crosses part-of-speech with a second variable,
presentation time, which is manipulated across two levels: 299
and 301 ms. If these researchers use a single-g prior, the value of g
will be lower for the second researcher to reflect the assuredly null
effect of presentation time. Hence, the Bayes factor for tests of part-
of-speech will differ, and, in particular, the second researcher will
bemore likely to interpret small observed part-of-speech effects as
evidence for a true effect. Themultiple-g prior allows the inference
about one factor to be independent of the patterns of effects in the
other factors.

12.2. A separate g-parameter for each effect

Each element in the diagonal of G may be specified as a unique
parameter, and the marginal joint prior on effects is consequently
the independent Cauchy in (4). This prior, which is also a multiple
g-parameter prior, has potentially many more g parameters than
the previous multiple g-parameter prior as there may be several
levels for each factor. To differentiate this prior from the previous
one, we call this prior the independent Cauchy prior and reserve the
termmultiple g-parameter prior for the recommended one inwhich
each factor rather than each effect is modeled with a separate g
parameter.

We argue that the independent Cauchy prior is not ideal for
ANOVA designs. Researchers use ANOVA specifically when effects
can be decomposed into factors. Factors, by their very nature, have
a group structure that imply a certain degree of coherence within
a factor. For instance, consider the orientation and frequency
factor in the previous example. The different levels of orientation
have a coherency in that they all describe a unified property;
different levels of frequency also have a coherency. This coherence
is captured by the exchangeability of level (Gelman, 2005) as
implemented by the correlations in the multivariate Cauchy. With
this prior, effects of levels of a factor cannot be arbitrarily different
from one another.

There are some designs/models where the independent Cauchy
prior is more appropriate than the recommended multiple
g-parameter prior, and these designs donot have a factor structure.
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For example, consider the question of whether various diverse
chemical compounds are agonists for a specific neural receptor.
Without some knowledge of the structure of the compounds, there
may be little coherency among them with regard to the ensuing
receptor activity. In this case, the analyst is not interested in the
mean effect of the compounds, or the variation around this mean.
Instead, the analyst assesses whether any specific compound
serves as an agonist, and there is no hypothetical correlation or
structure among the levels. The appropriate model is a cell-means
model in which there is a separate standardized effect parameter
for each cell, and an appropriate prior is the independent Cauchy
prior. Themultiple g-parameter prior, in contrast, embeds possible
structure among factors and is more appropriate for ANOVA
designs in which the analyst is concerned about main effects and
interactions.

13. A comparison to default regression priors

Inmodern statistics it is common to think of ANOVA and regres-
sion in a unified linearmodel framework. Yet, we think researchers
should be mindful of some differences when considering categor-
ical and continuous covariates. In the previous development, we
advocated priors that led to Bayes factors that were invariant to
the location and scale of measurement of the dependent variable.
With continuous covariates, it is desirable to consider an additional
theoretical property: the Bayes factor should be invariant to the lo-
cation and scale of the independent variable. For example, consider
a researcherwishes to study intelligence as a function of height, the
Bayes factor should not depend on whether height is measured in
inches or centimeters (or, for thatmatter, light years or ångströms),
The following Bayes factor, from Zellner and Siow (1980), obeys
this property.

Let the linear model in (6) hold with the condition that each
column of X sums to zero. This condition is not substantive
and provides no constraint; it simply guarantees that µ may be
interpreted as a grand mean. Zellner and Siow placed the nonin-
formative prior π(µ, σ 2) = 1/σ 2 and the following prior on stan-
dardized slopes θ:

θ | g ∼ Normal(0, g(X ′X)−1), g ∼ Scaled Inverse-χ2(N),

where the scaled inverse-χ2 distribution has density

f (x; h) = r−2(2π)−1/2(x/h)−3/2e−h/(2x), (21)

where h is a scale parameter. It is helpful to rewrite this prior so
that the scale factor of N is in the variance of θ rather than in g:

θ | g ∼ Normal(0, g(X ′X/N)−1), g ∼ Inverse-χ2. (22)

The difference between the Zellner and Siow prior and the oneswe
develop for ANOVA (Eq. (7)) is the introduction of a new scaling
matrix X ′X/N as well as the use of a single g-parameter. Because
X is set to be zero-centered, this scaling term can be thought of as
the variance or noise power of the covariates. The scaling term is a
matrix and includes the covariances between covariates, making it
appropriate for nonorthogonal covariates. A helpful interpretation
is that there is a g-prior on double standardized effects, where effects
is standardized to both the variability in the dependent variable
and covariates, and are, consequently, without units. This scaling
by X ′X/N is necessary for the resulting Bayes factor to be invari-
ant to the scale of the independent variable.With this scaling in the
prior, Liang et al. (2008) derive the following expression for the re-
sulting Bayes factor against the null model:

Bf 0 =


∞

0
(1 + g)(N−p−1)/2 1 + g


1 − R2−(N−1)/2

×

√
N/2

Γ (1/2)
g−3/2e−n/(2g)dg. (23)
The introduction of the scaling term X ′X/N strikes us as very
reasonable for regression applications with continuous covariates,
but less so for ANOVA applications with categorical covariates.
Consider the basic randomeffectsmodel given in (10)with a design
matrix given by

X =

1 0
1 0
0 1
0 1

 .
To meet the requirement that each column sums to zero, we
subtract a constant 1/2 from each entry:

D =

 1/2 −1/2
1/2 −1/2

−1/2 1/2
−1/2 1/2

 .
The resulting scale term is

D′D/N =


1/4 −1/4

−1/4 1/4


,

which is singular and cannot be inverted in the usual sense. One
alternative is to take a generalized inverse, which is proposed by
Bayarri and Garcia-Donato (2007). Even with the generalized in-
verse, we are unsure that the scale term is well calibrated for the
ANOVA case. Consider a balanced one-way ANOVA with a lev-
els and r replicates and design matrix X = Ia ⊗ 1r . Note that
(X ′X/N)−1

= aIa. Here, the prior variance on the effects is pro-
portional to the number of levels, which is indeed an unsatisfying
specification.6 Moreover, it has undesirable implications for con-
sistency. The Zellner–Siow priors lead to consistent Bayes factors if
model dimensionality is held constant, but they do not lead to con-
sistent Bayes factors if model dimensionality increases with sam-
ple size (Berger, Ghosh, &Mukhopadhyay, 2003; Liang et al., 2008).
In the current example, consistency would fail as a increases and
r is kept constant. Because a scales the prior variance, in the limit,
this variance would growwithout bound. Consequently, the Bayes
factor would favor the null regardless of the data. This behavior
contrasts unfavorably with the ANOVA priors in (7), which lead to
consistent Bayes factors even asmodel dimensionality is increased
with sample size.

We recommend that researchers choose priors based on
whether the covariate is categorical or continuous. It is appropriate
to use (7) for categorical covariates and (22) for continuous ones.
Models with both types of covariates may necessitate prior (7) on
the categorical effects and prior (22) on the continuous effects.

14. Computational issues

The critical step in computing Bayes factor is integrating the
likelihood function with respect to the prior distribution on
parameters. All of the models discussed have parameters µ, and
σ 2, and the non-null models have additional parameters θ and
g . Computation of Bayes factors, therefore, requires evaluation
of high-dimensional integrals. For the proposed models, it is
possible to derive closed-form expressions for the integrals over
µ, σ 2, and θ, and impossible to do so for g . Although the closed-
form integration greatly reduces the dimensionality of integration
relative to the number of parameters, the resulting integral in (9)
is still potentially multidimensional. The evaluation of this integral
is the topic of this section.

6 This dependence of prior variance on the number of levels holds even if one
centers the design matrix so that the columns are orthogonal to 1 and then takes
the generalized inverse.
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Fig. 7. Concentration of posterior relative to the prior. A. The posterior for g is not too concentrated relative to its prior, and Monte Carlo integration is relatively efficient. B.
The posterior for effect-size (α) is more concentrated relative to prior, indicating that the closed-form integration over effects and variance is very helpful. The figure shows
the case for a two-group design with 100 observations in each group. The model is a one-way, fixed effects model with four parameters: µ, σ 2, α and g .
We evaluate the multidimensional integral in (9) with a
straightforward formofMonte-Carlo sampling. Note that the Bayes
factor in (9) may be expressed as an expected value:

B10 = Eg [S(g)],

where the expectation is with respect to the prior distributions on
g1, . . . , gr . This expectation value may be approximated by

Eg [S(g)] =
1
L

L
ℓ=1

S(gℓ),

where gℓ is an r-dimensional random vector sampled from the
joint prior on g .

The efficiency of this method is a function of the concentration
of S(g) relative to the prior on g . If S(g) has large values on just
a small range of g relative to the prior, then it will take a great
many samples of g to accurately estimate the integral. Conversely,
if S(g) is spread across a wide range, then Monte Carlo integration
may converge quickly. Fortunately, for commonly used designs
in experimental psychology, S(g) is relatively diffuse, and Bayes
factors in (9) may be evaluated quickly and accurately with Monte
Carlo integration.

Fig. 7(A) illustrates why simple Monte Carlo integration of
g parameters may be effective. Shown are posterior and prior
distributions of g for a fixed-effects ANOVA model with two levels
on a single factor. There are four parameters for this model:
µ, σ 2, α (standardized effect), and g . The critical quantity is S(g),
and it is proportional to the ratio of posterior and prior densities.
As can be seen, the posterior is not much more concentrated than
the prior, implying that S(g) is also fairly diffuse. Although the
figure demonstrates the diffuseness of the posterior for a single-g
parameter prior, this diffuseness is general and applies to multiple
g-parameter priors aswell. Fig. 7(B) illustrates that the closed-form
integration of the other parameters is necessary. Shown are the
posterior and prior distributions of α, on which a standard Cauchy
prior is placed. The posterior is quite concentrated, especially
relative to the prior, and this concentration will slow convergence
of most numerical methods. In fact, the analytic integration of
µ, σ 2, θ in the Appendix is critical for the convenient evaluation
of (9).

In several cases, such as one-way ANOVA, or certain regression
models, there may be a single g parameter. In this case, the
integration in (9) is over a single dimension. We have found
that Gaussian quadrature (Press et al., 1992) provides for quick
and accurate estimation of Bayes factors, and recommend it
for these cases. With large samples, researchers should be
cognizant of numerical precision issues, andmay have to fine-tune
default quadrature algorithms. We have yet to explore Gaussian
quadrature integration across multiple dimensions, but given the
properties of S(g), it may serve as a reasonable alternative to
Monte Carlo integration in this context.

There are alternative approaches to evaluating (9) than
Gaussian quadrature or simple Monte Carlo integration. In cases
where model dimensionality is large, it may prove necessary to
use other sampling approaches, such as importance sampling
(Ross, 2002) or bridge sampling (Meng & Wong, 1996). Another
alternative is to use MCMC-based approaches, such as evaluating
the Savage–Dickey density ratio or its generalizations (Chib, 1995;
Dickey & Lientz, 1970; Morey, Rouder, Pratte, & Speckman, 2011;
Verdinelli &Wasserman, 1995) or transdimensional MCMC (Carlin
& Chib, 1995; see Lodewyckx et al., 2011 for a review). One
approach that we have tried that does not seem to work as well
as hoped is the Laplace approximation (Gelman et al., 2004); the
accuracy of the approximation is poor in some cases because
the tails on the posterior of g diminish very slowly. The current
approach of Monte Carlo sampling directly from the priors seems
more convenient thanMCMC approaches because the analyst need
not worry about mixing.

We have implemented Gaussian quadrature (for one g-param-
eter priors) and Monte Carlo sampling (for multiple g-parameter
priors) in the bayesfactorPCL package for the R statistical
software package. The package is currently in beta develop-
ment and can be found at https://r-forge.r-project.org/projects/
bayesfactorpcl/.

15. Bayes factor for a nonlinear application: skill acquisition

The current development is for linear ANOVA and regression
models. Yet, many mathematical psychologists are interested
in the analysis of nonlinear models. The current development
must be modified, in some cases significantly, to accommodate
nonlinearity. There are two general approaches that may prove
useful: Laplace approximation and Savage–Dickey density ratio
evaluation. The Laplace approximation is based on assuming
that the posterior can be well-approximated with a multivariate
normal, which can be integrated analytically. Sarbanés Bové and
Held (2011) use the Laplace approximation to develop Bayes
factors with g priors for the class of generalized linear models
(McCullagh & Nelder, 1989). Some psychological process models
are members of the generalized linear model class, including
Bradley–Terry–Luce scaling models (Bradley & Terry, 1952; Luce,
1959) and a wide class of signal-detection models (DeCarlo, 1998).
Several other psychological processing models fall outside the
GLM class; examples include response time models with shift
parameters that denote the lower bound of support, such as the
TER shift parameter in Ratcliff’s (1978) diffusion model.

https://r-forge.r-project.org/projects/bayesfactorpcl/
https://r-forge.r-project.org/projects/bayesfactorpcl/
https://r-forge.r-project.org/projects/bayesfactorpcl/
https://r-forge.r-project.org/projects/bayesfactorpcl/
https://r-forge.r-project.org/projects/bayesfactorpcl/
https://r-forge.r-project.org/projects/bayesfactorpcl/
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Fig. 8. Mean task completion time as a function of practice for simulated data. Means are averages over 30 participants. Solid and dashed lines show best lest-squares fit
for three parameter exponential and power laws, respectively. A. Each individual’s data follow an exponential law and were generated with Me in (26). B. Each individual’s
data followed a power law and were generated with Mp in (27).
In this section we provide an example of a nonlinear
application. We develop a few nonlinear models, and compute
the multiple-g prior Bayes factor using the Savage–Dickey density
estimation approach (Dickey & Lientz, 1970; Morey et al., 2011).
Our example is skill acquisition, and we address the particularly
hard problem of assessing whether the speeding of the time to
complete a task falls as a power function or exponential function of
the amount of practice. Prior to the work of Heathcote, Brown, and
Mewhort (2000), it was generally accepted that learning followed
a power law with practice (e.g., Newell & Rosenbloom, 1981),
and this power law speed up was explained by a straightforward
race-among-exemplars process (Logan, 1988, 1992). Estimating
learning curves has been a particularly vexing problem; although
averaging across participants seems attractive to reduce noise, the
functional form of the averaged data may not accurately reflect
the functional form of individuals (Estes, 1956). Heathcote et al.
(2000) provide a particularly lucid description of the problem for
assessing whether learning is a power law or an exponential law.
The power law describes a more shallow decrease in learning than
the exponential. Averaging data is known to artifactually shallow
the form of learning. Heathcote et al. showed that if all individuals
followed an exponential decrease (a steep form of learning), then
the averaged data would approximate a power law even though it
was not characteristic of any one individual.

Fig. 8 provides some perspective on the difficulties of adjudi-
cating between power and exponential laws of learning. The panel
shows mean task completion time as a function of practice. The
left panel shows data where all individuals follow an exponential
law, but there is variation in scale and shift across individuals that
shallow the aggregate curve. Here, best fitting power lawand expo-
nential laws are quite similar, and any analysis ofmean datawould
be inconclusive. The right panel shows data where all individuals
follow a power law. Neither power-law nor exponential-law fits to
the data are perfect, and eachmisses in slight but systematic ways.
Herewe see that it is quite difficult to adjudicate between the func-
tional forms form the analysis of mean data aggregated across in-
dividuals.

We develop Bayesian hierarchical nonlinear power-law and
exponential-law models with multiple g-priors and use Sav-
age–Dickey density ratio estimation to compute the Bayes factor
between the twomodels. In the experimental setup, a set of a indi-
viduals each perform a task J times, and the dependent variable is
the time taken to complete the task. Let tij denote this time for the
ith participant on the jth trial, i = 1, . . . , a, j = 1, . . . , J . As people
repeat the task, they learn how to do it faster, and their times de-
crease. We model skill acquisition as a three-parameter, shifted
lognormal:

log(tij − ψi) = µ+ αi + βxj + ϵij, (24)

whereψi serves an individual-specific shift parameter,µ is a grand
mean on the log scale, αi is a subject effect, xj is a covariate related
to the level of practice, and β is a slope. Noise terms are

ϵij
i.i.d.
∼ Normal(0, σ 2).

The lognormal is a unimodal distribution with an elongated right
tail and a relatively soft rise, and all three of these properties are
characteristic of response time distributions. Not surprisingly, it
has been recommended as both a descriptive model and process
model of RT (e.g., Ulrich & Miller, 1993).

The lognormal is a shift-scale-shape model; parameter ψ
describes the shift, parameters µ, α, and β describe the scale;
parameterσ 2 describes the shape. If xj = j, then the expected value
of response time follows an exponential law:

E(tij) = ψi + Ki exp(β × j),

where Ki = exp(µ+αi +σ
2/2) serves as a constant. Alternatively,

if xj = log(j), then response time follows a power law:

E(tij) = ψi + Ki × jβ .

The fact that the power and exponential laws correspond to
different covariates is very useful. Before stating the models, we
standardized the linear covariates (xj = j) and logarithmcovariates
(xj = log(j)) so they have a mean of 0 and a variance of 1.
For the linear covariates, let w = 1, . . . , J denote the vector of
covariates, and let w̄ and sw be themean and (population) standard
deviation of w, respectively. The standardized linear covariate,
denoted cj, is cj = (wj − w̄)/sw . Likewise for logarithm covariates,
let v = (log(1), . . . , log(J)), v̄, and sv be the vector of covariates,
its mean, and its (population) standard deviation, respectively.
The standardized log covariate, denoted dj, dj = (vj − v̄)/sv .
The following three submodels of (24) serve respectively as a
null model (no skill acquisition), an exponential-law model, and
a power-law model:

M0 log(tij − ψi) = µ+ σαi + ϵij, (25)

Me log(tij − ψi) = µ+ σ(αi + βcj)+ ϵij, (26)

Mp log(tij − ψi) = µ+ σ(αi + βdj)+ ϵij, (27)

where effects are standardizedwith respect toσ 2 as in the previous
development. Priors are needed for all parameters. As before,
noninformative priors are placed on common parameters:

π(ψ, µ, σ 2) = 1/σ 2,
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where ψ = (ψ1, . . . , ψa). Separate g-parameter priors are placed
on participant and covariate slope:

α | g1 ∼ Normal(0, g1Ia),
β | g2 ∼ Normal(0, g2),

gk
i.i.d.
∼ Inverse-χ2(1), k = 1, 2.

The key objective is to compute a Bayes factor between the
power and exponential law: Bpe. This Bayes factor is given by Bpe =

Bp0/Be0, where Bp0 is the Bayes factor between Mp and M0, and Be0
is the Bayes factor between Me and M0. If the shift ψi is zero for
all people, then these Bayes factors could be calculated with (9) by
placing linear models on log yij. Unfortunately, empirical distribu-
tions of response time robustly exhibit substantial shifts (Rouder,
2005). Therefore, we implement an alternative Savage–Dickey ap-
proach to calculate Bp0 and Be0 as follows.

Models Mp and M0 are nested and differ by only the inclusion
of slope β . Dickey and Lientz (1970) noted that in some cases the
Bayes factor can be expressed in this case as a ratio of posterior and
prior densities of the parameter of interest, which in this case is β .
Because Dickey and Lientz attributed the idea to Savage, this ratio
is often called the Savage–Dickey density ratio. The ratio, denoted
here as D0p, is

D0p =
p(β = 0 | y)
p(β = 0)

, (28)

where the numerator and denominator are the posterior and prior
probabilities, respectively, that β = 0 under Model Mp. The
Savage–Dickey ratio is equal to the Bayes factor B0p under the
following independence conditions. Let η denote all parameters
that are in M0, and let π0 denote the prior density on these
parameters. Let πp be the priors of the same parameters underMp.
Then, the independence condition is given by

πp(η | β = 0) = π0(η).

Fortunately, this condition is satisfied by the standardized effect
models in (26) and (27), and, consequently, D0p = B0p. The evalua-
tion of the denominator, p(β = 0) is straightforward. Themarginal
prior on β is a Cauchy, and its density evaluated at β = 0 is
1/π (where π is the mathematical constant). The evaluation of
p(β = 0 | y), the posterior evaluated at β = 0, is more com-
plicated. Wagenmakers, Lodewyckx, Kuriyal, and Grasman (2010)
and Wetzels, Grasman, and Wagenmakers (2010), who first rec-
ommended computation of the Savage–Dickey ratio in psychology,
used the posterior samples of β to estimate the density at β = 0
through either splines or through a normal approximation. Chen
(1994) and Gelfand and Smith (1990) recommend an alternative
called conditional marginal density estimation (CMDE) in which the
probability that β = 0 is computed on each iteration of the chain
and averaged. Morey et al. (2011) discuss these methods at length
and performed a set of simulations to characterize their proper-
ties. In all cases, CMDE outperformed the other density estimation
methods and is implemented here.

For our case, it is relatively straightforward to set up an
MCMC chain to estimate parameters and the posterior density
p(β = 0 | y). Derivation of conditional posteriors is straightfor-
ward (see Rouder & Lu, 2005, for a tutorial in such derivations). Pa-
rameters ψ may be efficiently sampled with Metropolis–Hastings
steps; parameters µ,α, and β may be treated as one multivariate
block and have a joint conjugate prior; variance parameters σ 2, g1
and g2 have conjugate priors. These conjugate priors are conve-
nient as the corresponding parametersmay be sampledwith Gibbs
steps. The key step is evaluating the conditional posterior density
of β at the point β = 0, and since this conditional is a normal den-
sity, evaluation is computationally convenient.
Bayes factors were computed by Savage–Dickey density ratios
for the two sample data sets in Fig. 8. The data for Fig. 8(A) was
generated from Me with sizable uncorrelated individual variation
in ψ and α; the data in Fig. 8(B) was generated from Mp, again
with sizable uncorrelated individual variation. The resulting Bayes
factor for the data in Fig. 8(A) was Bpe = 7.4 × 10−31, indicating
strong evidence for the exponential law. This behavior is desirable
as the true data were generated with the exponential-law model.
Likewise, the resulting Bayes factor for the data in Fig. 8(B) was
Bpe = 1.4×106, which is also desirable as the data were generated
by the power-law model. As can be seen, g-prior Bayes factor
assessment of the functional form of the learning curve is possible
and convenient, and it is more principled and more powerful than
assessment from averaged data. In general, we suspect that both
Savage–Dickey density ratios and Laplace approximations will be
useful for developing g-prior Bayes factors in other nonlinear
settings.

16. Conclusions

One goal in the analysis of experimental data is the assessment
of theories that specify constraints among observables. In service
of this goal, there is a general need to be able to state evidence
for invariances as well as for effects. The Bayes factor provides
an approach to measuring evidence from data for competing
theoretical positions, including those that specify invariances. In
this regard, it provides a principled approach to accumulating
evidence for null hypotheses, an advantage not shared with null
hypothesis significance testing.

One of the necessary conditions for increased adoption of Bayes
factors is development of default priorswith associated algorithms
for Bayes factor computation. Our approach herein is an objective
approach inwhich priors are chosen based on desirable theoretical
properties of the resulting Bayes factor. The defaults we advocate,
combinations of multivariate and independent Cauchy priors on
effects, lead to well-behaved Bayes factors that are invariant
to changes in measurement scale. The resulting computation
is convenient, especially when the number of g-parameters
is relatively small. We therefore propose the default Bayes factor
as a replacement for null hypothesis significance testing in
regression, ANOVA, and other linear models.

We conclude with a few caveats. The current class of default
priors does not free the researcher from making important
decisions in analysis. Some of these decisions, such as specifying
whether model factors are to be treated as fixed or random, or
specifying which models are to be compared, are not unique to
Bayesian statistics. Other decisions, such as those involving the
choice of priors, are more specialized. The most consequential
of these prior specifications is the prior on effect parameters,
and we have recommended a combination of multivariate
and independent Cauchy priors as a default position. This
recommendation is not a hard and fast rule, and it may be adapted
as needed to reflect context about parameter variation, or, perhaps,
the goals of inference. For example, researcherswho a prioribelieve
that small effects in a domain are substantially important and
highly probable may wish to use a less diffuse prior than the
Cauchy, or, perhaps, a Cauchy of reduced scale.7

Finally, we cannot escape the observations that (a) testing is
not the most appropriate analysis in many situations, and that
(b) testing is performed far too frequently in psychology. In fact,

7 The development is generalized to a scaled Cauchy prior on standardized effects
with scale

√
h by placing a scaled inverse-χ2 prior on g with scale h (see Eq. (21)).

The marginal likelihood in (8) and Bayes factor in (9) correspond to the case that
h = 1, but are easily generalized for a scaled inverse-χ2 prior on g .
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we characterize the field as having a testing fetishism in which
common-sense exploratory analyses are sometimes ignored in
favor of ill-suited hypothesis tests. For example, researchers are
quick to resort to ANOVA as the main tool of analysis, even
in cases where null hypotheses are implausible a priori (Cohen,
1994; Morey & Rouder, 2011). They routinely test all main effects
and interactions, often complete with post hoc tests of which
levels are significantly different. We note that structure in data
is sometimes not elucidated adequately by assessment of effects
in linear models, and that exploratory and graphical methods
often offer a more suitable alternative (Gelman, 2005; Wilkinson
& the Task Force on Statistical Inference, 1999). Researchers using
testing, including Bayes factors, should keep in mind that they
are trying to divine structure from comparisons among a set
of models that are highly simplified representations of nature.
The implicit justification for testing is that a comparison among
simplified models still yields useful insights into the structure
of the data and the relative applicability of various theoretical
positions. This justification will not always be present, and when
it is not, other methods of analysis are better suited. Although
we hope that researchers adopt Bayes factors for their testing,
we would find it problematic if they substituted a fetishism with
p-values for one with Bayes factors. In summary, the following
compact tag line, adopted from a current beer commercial,8 seems
highly appropriate: ‘‘I don’t always test, but when I do, I prefer
Bayes factors’’.
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Appendix

Proof of (8). We have the model specification and priors on µ, θ
and σ 2:

f (y | θ, µ, σ 2) =
1

(2π)N/2(σ 2)N/2

× exp


−

1
2σ 2

(y − 1µ− Xθ)′(y − 1µ− Xθ)


,

π(µ, σ 2) = 1/σ 2, and

π(θ | σ 2, g) =
1

(2π)P/2(σ 2)P/2|G|1/2
exp


−

1
2σ 2

θ′G−1θ


,

where 1′
= (1, . . . , 1) is a vector of length p.

The required marginal likelihood,m, is

m =


g1

· · ·


gr
f (y | g)π(g) dg1 · · · dgr ,

where

f (y | g) =


σ 2


µ


θ

f (y, θ, µ, σ 2
| g) dθ dµ dσ 2, (29)

with

f (y, θ, µ, σ 2
| g) = f (y | θ, µ, σ 2)π(θ | σ 2, g)π(µ, σ 2). (30)

The proof follows by showing that f (y | g) = Tm(g), where Tm is
defined in (8).

8 The commercial for Dos Equis brand beer endswith the tag line, ‘‘I don’t always
drink beer, but when I do, I prefer Dos Equis’’. See www.youtube.com/watch?
v=8Bc0WjTT0Ps.
Combining terms,

f (y, θ, µ, σ 2
| g) =

1
(2π)(N+P)/2(σ 2)(N+P)/2+1|G|1/2

× exp

−

Q
2σ 2


,

where

Q = (y − 1µ− Xθ)′(y − 1µ− Xθ)+ θ′G−1θ.

Now let P0 =
1
N 11

′ and complete the square in µ to obtain

Q = (y − 1µ)′(y − 1µ)+ N

µ−

1
N
1′(y − Xθ)

2

−
1
N
(1′(y − Xθ))2 + θ′G−1θ

= (y − 1µ)′(I − P0)(y − 1µ)+ N

µ−

1
N
1′(y − Xθ)

2

+ θ′G−1θ.

Thus
∞

−∞

f (y, θ, µ, σ 2
| g) dµ

=
1

(2π)(N+P−1)/2(σ 2)(N+P−1)/2+1|G|1/2
√
N

exp

−

Q2

2σ 2


,

where

Q2 = (ỹ − X̃θ)′(ỹ − X̃θ)+ θ′G−1θ,

with ỹ = (I − P0)y and X̃ = (I − P0)X . (We have used the fact
that (I − P0) is a perpendicular projection.)

Next, let Vg = X̃ ′X̃ + G−1 so that

Q2 = ỹ ′ỹ + (θ − V−1
g X̃ ′ỹ)′Vg (θ − V−1

g X̃ ′ỹ)− ỹ ′X̃ ′V−1
g X̃ ′ỹ.

We then have
∞

−∞


f (y, θ, µ, σ 2

| g) dµ dθ

=
1

(2π)(N−1)/2(σ 2)(N−1)/2+1|G|1/2
√
N|Vg |

1/2

× exp

−

1
2σ 2

(ỹ ′ỹ − ỹ ′X̃ ′V−1
g X̃ ′ỹ)


.

Finally, integrating out σ 2 yields (8). �
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