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The theory of signal detection is convenient for measuring mnemonic ability in recognition memory
paradigms. In these paradigms, randomly selected participants are asked to study randomly selected
items. In practice, researchers aggregate data across items or participants or both. The signal detection
model is nonlinear; consequently, analysis with aggregated data is not consistent. In fact, mnemonic
ability is underestimated, even in the large-sample limit. We present two hierarchical Bayesian models
that simultaneously account for participant and item variability. We show how these models provide for
accurate estimation of participants’ mnemonic ability as well as the memorability of items. The model is
benchmarked with a simulation study and applied to a novel data set.

Key words: recognition memory, theory of signal detection, Bayesian models, hierarchical models, MCMC
methods.

The theory of signal detection is a dominant psychometric model in perceptual and cognitive
psychology. The focus of this paper is the application of signal detection to the measurement of
mnemonic ability. The problem is complex because in typical designs, researchers sample both
participants and items. Consequently, the effects of participants and items should be modeled as
random effects. In conventional analysis in the memory literature, however, researchers aggregate
scores across items. Aggregation implicitly treats items as fixed effects (Clark, 1973). Because
the signal detection model is nonlinear, this misspecification leads to inconsistent estimation—
estimates of mnemonic ability are asymptotically downward biased (Rouder & Lu, 2005; Wick-
elgren, 1968). To provide for accurate estimation, we propose hierarchical Bayesian models with
two sets of random effects: one set for participants and another set for items.

The Theory of Signal Detection

The theory of signal detection was first proposed to study audition (Tanner & Birdsall,
1958). The goal in this early application was to measure a listener’s ability to perceive pure tones
embedded in noise. Since then, the theory of signal detection has become a dominant measurement
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FIGURE 1.
The signal detection model. Solid and dashed curves denote densities of familiarity distributions for old and new items,
respectively. Solid, dashed, and dashed–dotted vertical lines denote 0, criterion c, and sensitivity d ′, respectively. If
familiarity is greater than criterion c, then an old-item response is produced; otherwise, a new-item response is produced.

model of participants’ ability in many cognitive and perceptual domains. In particular, it has
become a mainstay in the study of memory.

The signal detection model is often applied in a recognition-memory paradigm. The task
consists of a study and a test phase. At study, the participant is presented a list of items and
instructed to remember them for a later test. Then, after a suitable delay, the participant is tested.
At test, items are presented sequentially. Some of these items were previously studied while
others were not. The participant’s task is to judge each item as previously studied (denoted an
old item) or not (denoted a new item).

Figure 1 depicts the signal detection model. According to the model, when a participant is
presented with an item at test, he or she assesses its familiarity. This familiarity varies from trial
to trial because the participant is assumed to be a noisy system. The distribution of familiarity
depends on whether the item was studied or not. New-item trials give rise to familiarities centered
around zero; old-item trials, which have greater familiarity, give rise to distributions centered
around parameter d ′ with d ′ ≥ 0. Distributions of familiarity are assumed to be normal with unit
variances. To make a decision, the participant sets a criterion c on familiarity. If the familiarity
is greater than c, then the participant indicates that the item is old, otherwise he or she indicates
that the item is new. Parameter d ′ serves as a measure of mnemonic ability and is often referred
to as sensitivity. The assumption of equal variance is adopted for expository convenience and is
easily generalized as discussed in the General Discussion and Appendix.

There is a second version of signal detection in which participants evaluate likelihood ratios
of familiarity instead of familiarity itself. Let x denote the familiarity on a trial and let fS and fN

denote the pdfs of familiarity for old and new items, respectively. Then, in this second version,
participants compute the likelihood ratio g:

g(x) = fS(x)/fN (x).

Participants set a criterion δ on g and produce an old-item response if g > δ and a new-item
response otherwise. For the case in which familiarity is distributed as a normal with constant
variance, the model with criterion on familiarity (c) and on likelihood ratio (δ) are formally equiv-
alent. There is a one-to-one monotonically increasing mapping from c to δ. The psychological
underpinnings of the versions differ. In the likelihood-ratio version, participants must have at least
implicit knowledge of the distributions of familiarity for studied and unstudied items. For the
first version in which familiarity itself is directly assessed, this knowledge is not necessary. The
validity of the two versions is assessed by studying how criteria change across different stimulus
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conditions. As the first version is more standard in recognition memory experiments, we develop
it below, but return to the issue subsequently.

In recognition-memory experiments, a hit event is an old-item response to a studied item;
a false alarm event is an old-item response to a new item. Probabilities of hits and false alarms,
denoted by H and F , respectively, are given by

H = 1 − �(c − d ′) = �(d ′ − c), (1)

F = 1 − �(c) = �(−c), (2)

where � denotes the standard normal cdf. It is convenient to parametrize this model in terms of
probit transforms of hit and false alarm probabilities. Let h = �−1(H ) and f = �−1(F ). Then,

h = d ′ − c,

f = −c.

There are two complementary events: a new-item response to a studied item (termed a miss
event) and a new-item response to a new item (termed a correct rejection event). The probability
of these events are complements of hit and false alarm probabilities, respectively. Therefore,
consideration of hit and false alarms alone is sufficient for analysis.

The data in the recognition memory paradigm are nonidentically distributed dichotomous
events: participants judge items as either old or new. The conventional approach is to aggregate
responses across items, participants, or both. The proportion of studied items judged old is called
the hit rate; the proportion of new items judged old is called the false alarm rate. Probit transforms
of hit and false alarm rates serve as estimates of h and f , respectively.1 Estimates of d ′ and c are
given by

d̂ ′ = ĥ − f̂ , (3)

ĉ = −f̂ . (4)

When events are aggregated across items, it is implicitly assumed that each item has the
same memorability and induces the same criterion. Likewise, when events are aggregated across
participants, it is implicitly assumed that people have the same sensitivity and criterion. These
implicit assumptions are assuredly too strict. People will vary from each other in their sensitivity
(d ′) and in their criteria (c). Items will certainly vary from each other in sensitivity—some items
may be more memorable than others. Likewise, there may be item effects on criteria. Some items
may seem more familiar than others whether studied or not. This additional baseline familiarity
will shift both the new-item and old-item distributions. This shift in distributions raises hits when
the item is old and false alarms when it is new. It is equivalent to a criterion shift.

The Deleterious Effects of Unmodeled Variability

Unfortunately, aggregation may lead to an asymptotic underestimation of sensitivity in the
signal-detection model (e.g., Rouder & Lu, 2005). We performed a small simulation to assess
the effects of aggregation as follows: Let d ′

ij and cij denote the sensitivity and criterion of the
ith person responding to the j th item, respectively. Each d ′

ij was the sum of a participant ef-
fect and an item effect, d ′

ij = ai + bj , with ai sampled from a log-normal distribution and bj

1On occasion, participants produce no misses or no false alarms. Probit transforms are not finite in these cases. There
are several reasonable alternatives proposed in the literature (Hautus & Lee, 1998; McMillan & Creelman, 1991; Snodgrass
& Corwin, 1985). The most common alternative is to add half a count to hit, miss, false-alarm, and correct-rejection
frequencies. We adopt this approach in analysis of experimental data.
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FIGURE 2.
The effect of unmodeled item variability on the estimation of sensitivity (d ′). The left panel shows the results with no
item variability; the right panel shows the same with a high degree of item variability. Figure reprinted from Rouder and
Lu (2005). Permission pending.

sampled from a zero-centered normal distribution. Criterion cij was assumed to be unbiased for
each participant-item combination, i.e., cij = d ′

ij /2. The motivation for this choice comes from
an empirically observed phenomenon, the mirror effect, which is discussed subsequently. From
these sensitivities and criteria, true participant-by-item hit and false-alarm probabilities were
computed by (1) and (2). Simulated data were generated from these probabilities—there were 50
hypothetical participants observing 50 old-item trials and 50 new-item trials. Event frequencies
were aggregated across items for each participant, and an individualized d ′ was estimated. The
left-hand panel of Figure 2 shows these estimates against the true values for the case in which
there was no variability in bj (i.e., bj = 0, ∀j ). In this case, the implicit independence-and-
identically-distributed (iid) assumption about items is met and aggregation is valid. Not surpris-
ingly, sensitivity estimates show no systematic bias. The right-hand panel shows the case in which
there is variability in bj . This variability violates the iid assumption implicit in aggregation. This
violation has a deleterious effect—sensitivity estimates are too low. Most troubling, this bias is
asymptotic.

Participant and item variability should be treated as more than just a nuisance. There are many
participant variables that influence mnemonic ability including age, vocabulary, and intelligence.
Studying how individual differences affect memory has been a productive line in theory building
(e.g., Kane, Hambrick, Tuholski, Wilhelm, Payne, & Engle, 2004; Salthouse, 1996). Likewise,
there are item variables that affect memory. One example is word frequency. Word frequency
is literally the number of times a word appears in a corpus of printed text (Kucera & Francis,
1967). High-frequency words, such as dog are used often; low-frequency words, such as lynx, are
rare. Low-frequency words are better recognized than high-frequency words (Glanzer, Adams,
Iverson, & Kim, 1993; Gillund & Shiffrin, 1984). This fact is somewhat surprising as people have
more experience with high-frequency words. The low-frequency advantage provides constraints
on mnemonic theories—they cannot simply be about fluency with material.2 In sum, participant
and item effects themselves are suitable targets of measurement for theory construction.

2Current theories of recognition memory implicitly assume that the noise in mnemonic systems is more similar to
high-frequency items than to low-frequency items. Hence, against this noise, low-frequency items are more distinct than
high-frequency items (e.g., Shiffrin & Steyvers, 1997).
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Two Hierarchical Models with Random Effects

To provide for accurate estimation of participant and item effects, we propose two hierar-
chical signal detection models. These models posit random participant and item effects. Instead
of placing models on sensitivity and criterion, it is more convenient to place them on probit
transforms of hit and false alarm probabilities. Let hij and fij be the hit and false alarm probits,
respectively, for the ith participant tested on the j th item. We model hij and fij as the sum of
participant and item effects:

hij = µ(h) + α
(h)
i + β

(h)
j ,

fij = µ(f ) + α
(f )
i + β

(f )
j .

Parameters µ(h) and µ(f ) are overall means; parameters α
(h)
i and α

(f )
i are participant effects; and

parameters β
(h)
j and β

(f )
j are item effects. These participant and item effects are modeled with

zero-centered bivariate normal distributions:(
α

(h)
i

α
(f )
i

)
iid∼ N2(0,�α), i = 1, . . . , I, (5)

�α =
(

σ 2
α,h

ρασα,hσα,f

ρασα,hσα,f

σ 2
α,f

)
,

(
β

(h)
j

β
(f )
j

)
iid∼ N2(0,�β), j = 1, . . . , J, (6)

�β =
(

σ 2
β,h

ρβσβ,hσβ,f

ρβσβ,hσβ,f

σ 2
β,f

)
.

The covariance structures on the bivariate normals allow for arbitrary variance and correlation
of participant effects on hit and false alarm rates; the same applies for item effects. We call this
model the correlated random effects signal detection model and refer to it as the correlated model.

The correlated model is highly similar to our hierarchical process dissociation memory model
(Lu, Speckman, Sun, & Rouder, submitted; Rouder, Lu, Morey, Sun, & Speckman, submitted).
The goal of the process dissociation procedure is to separate conscious recollection and automatic
activation processes in memory recall (Jacoby, 1991). Analogous to the current development, we
modeled probit transforms of conscious recollection and automatic activation probabilities as the
sum of a grand mean, participant effects, and item effects. Participant effects across conscious
recollection and automatic activation processes were assumed to arise from a bivariate normal
with possible correlation. Likewise, item effects across both processes were similarly modeled as
arising from a bivariate normal. Hence, development of mixed linear models is broadly applicable
in several mnemonic measurement models.

For signal detection we also consider the case without correlation; i.e., the submodel of (5)
and (6) with ρα = ρβ = 0. For i = 1, . . . , I and j = 1, . . . , J :

α
(h)
i

iid∼ N(0, σ 2
α,h),

α
(f )
i

iid∼ N(0, σ 2
α,f ),

β
(h)
j

iid∼ N(0, σ 2
β,h),

β
(f )
j

iid∼ N(0, σ 2
β,f ).
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We call this model the independent random effects signal detection model and refer to it as the
independent model. We first proposed the independent model in Rouder and Lu (2005).

In both the correlated and independent models, participant-by-item sensitivity and criterion
are given by d ′

ij = hij − fij and cij = −fij , respectively. Sensitivity and criterion for the ith

participant are given by µ(h) + α
(h)
i − µ(f ) − α

(f )
i and −µ(f ) − α

(f )
i , respectively. Sensitivity and

criterion for the j th item are given by analogous expressions with β
(h)
j and β

(f )
j . Overall sensitivity

and criterion are given by µ(h) − µ(f ) and −µ(f ), respectively.

Plausibility of Correlated Random Effects

In the preceding section we proposed two models: one in which random effects were assumed
to be independent and another in which they are allowed to be correlated. This correlation has
important theoretical interpretations and is used to assess whether participants set criteria on
familiarity itself or on likelihood ratios. The most studied correlation in recognition memory is
the mirror effect. The mirror effect refers to a negative correlation between hit and false alarm
rates (Glanzer et al., 1993). Perhaps the most dramatic display comes from Singer, Gagnon,
and Richard (2002). These researchers asked participants to recognize sentences. Some of the
sentences were studied and then a delay was introduced. After the delay, more sentences were
studied and then there was a recognition memory test. Not surprisingly, old sentences studied
after the delay produced more hits than those studied before the delay. More surprisingly, new
sentences similar to those studied after the delay produced fewer false alarms to new sentences
similar to those studied before the delay. This change in false alarms implies that the criterion
on familiarity shifted as a function of delay, even for items not studied. Current theoretical
explanations of the mirror effect invoke the likelihood ratio version of the signal detection theory
(e.g., Glanzer et al., 1993; McClelland & Chappell, 1994; Shiffrin & Steyvers, 1997). In these
theories, participants compute a separate likelihood ratio for each class of stimuli, implying that
participants operate with a large degree of knowledge about the mnemonic properties of different
classes.

Mirror effects are not universally observed. Some variables affect the criterion and induce a
positive correlation between hits and false alarms. Depressed elderly people, for example, tend
to have exceptionally conservative criteria emphasizing both correct rejection and misses (Miller
& Lewis, 1977). Other variables affect either hit or false-alarm rates, exclusively. Stretch and
Wixted (1998), for example, asked participants to study some words one time (weak items) and
others three times (strong items). To make this manipulation clear to participants, strong items
were colored blue while weak items were colored red. At test, strong and weak targets appeared
in their respective colors. New items were also colored; half were red and half were blue. Hit
rate varied as a function of color, with strong (blue) words having a higher hit rate than weak
(red) ones. False alarm rates, however, did not vary with color. Thus, the effect of increasing the
strength of a word through repetition affects only the hit rate and not the false-alarm rate. These
effects, in contrast to mirror effects, imply a constant criterion on familiarity itself rather than on
the likelihood ratio.

Mapping out the correlation among hits and false alarms effects across conditions, items, and
participants is germane for theory construction. The hierarchical models provide for the principled
measurement of these correlations. At first glance, it would appear that the appropriate model
is the correlated one, which can account for any degree of correlation including no correlation.
Yet, this reasoning is not complete. The independent model is consistent, and this implies that as
the sample size is increased, true correlation in random effects will be evident in their estimates.
For example, the correlation between participant random effects may be explored by examining
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scatter plots of α̂
(h)
i versus α̂

(f )
i . The difference between the independent model and the correlated

is a difference in priors. The prior for the correlated model allows for correlation among random
effects; the prior for the independent model does not. With sufficient data, these priors are less
influential. The advantages of using the correlated model is that it is possible to perform formal
inference on the correlations among random effects. There are, however, disadvantages to the
correlated model as the priors we employ are necessarily informative. We discuss these issues
next.

Prior Distributions of Parameters

We analyzed the models in the Bayesian framework and used Markov chain Monte Carlo
(MCMC) sampling (Gelfand & Smith, 1990) to estimate posterior distributions of parameters.
Priors are needed for grand means (µ(h), µ(f )) and the variance (and covariance) of the ran-
dom effects. For the independent model, specifying priors is fairly straightforward. In Bayesian
analysis, flat distributions3 are commonly used as priors on grand mean parameters, and inverse
gamma distributions are commonly used as priors on variance parameters. The density of the
inverse gamma is given by

f (σ 2 | a, b) = b a

�(a)(σ 2)a+1
e
− b

σ2 , a, b, σ 2 > 0.

As the parameters a and b approach 0, the prior approaches 1/σ 2, which is the Jeffreys prior

for the variance (Jeffreys, 1961) in the simpler problem of estimating the variance of a normal
distribution. We used values of a = b = .01 to approximate the Jeffreys prior. One must be
careful, however, in using priors that are improper or nearly so like the flat prior or the Jeffreys
prior. In some cases, improper priors lead to improper posteriors, which invalidates MCMC
sampling (Hobert & Casella, 1996). When nearly improper priors are used, one should determine
if the Bayes inference is influenced by prior values.

We chose the inverse Wishart distribution as priors for the covariance matrices (�α,�β)
in the correlated model. Choice of priors for covariance matrices is an active area of research
and the inverse Wishart is convenient. This distribution is semiconjugate in the sense that the
full conditional posteriors of �α and �β are also inverse Wishart. The two-dimensional inverse
Wishart density on a covariance matrix S with m degrees of freedom and scale matrix � has
density

f (S | m,�) = |�|m/2|S|−(m+3)/2

2m�2(m/2)
exp

(
−1

2
tr(�S−1)

)
, (7)

where S is a positive definite matrix and �p is the multivariate gamma function given by �p(a) =
πp(p−1)/4	

p

j=1�(a − 1
2 (j − 1)) (see, e.g., Gelman, Carlin, Stern, & Rubin, 2004, p. 574). In the

bivariate case, the mean of the distribution only exists for m ≥ 4, in which case it is �/(m − 3).
Parameter m must be at least 2 for the prior to be proper.

Parameters m and � must be selected beforehand. The choice m = 2 is natural as it is least
informative. The choice of �, however, is more complicated. Because it is plausible that the
correlation between hits and false alarms in the data may be negative, positive, or null, there
should be little information about the direction and magnitude of the correlation coefficient. This
lack of information is represented by assigning off-diagonal elements of � to zero. Likewise,
there is no a-priori information about the relative size of variability of random effects for hits and

3Flat distributions may be approximated by normal distributions with large variance.
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TABLE 1.
Effect of ω on marginal distribution of variance with inverse Wishart prior
(7) and (8).

Estimated quantiles

ω .01 .1 .3 .5 .7 .9 .99

.1 .015 .037 .093 .22 .67 6.3 630
1 .15 .37 .93 2.2 ‘6.7 63 6300
10 1.5 3.7 9.3 22 67 630. 63,000

Note: Quantiles estimated from 500,000 samples.

false alarms. This lack of information is represented by assigning diagonal terms of � equal to
each other. With these two restrictions,

� =
(

ω 0

0 ω

)
.

The advantage of this prior is that it is fairly diffuse and properly skewed (see Table 1). The
disadvantage, however, is that this prior is informative. The value of ω serves as a scale factor on
the variance. To explore this prior, we simulated the inverse Wishart and listed estimated quantiles
as a function of ω (see Table 1). The larger ω, the more mass is concentrated on larger values of
variances. This scaling property means that the researcher must make an assumption about the
size of the variance for random effects. Because it may be difficult to develop prior knowledge
for these variances, we proceed by repeating the analysis for a few values of ω that span a wide
range. In the simulations and application, we performed the analysis with three different values
of ω (ω = .1, 1, 10) to assess the effects of different choices. The choice of ω = 1 corresponds
to the Wishart prior studied by Browne and Draper (2000).

The situation is far more sanguine with regards to the prior on correlation coefficient—the
choice of ω does not affect the marginal prior. Figure 3 shows this prior for m = 2. The marginal
prior has increased mass at the extreme values of ρ = −1 and ρ = 1. This type of prior is similar
in form to the noninformative Haldane prior on a probability parameter.

Method of Analysis

Derivation of closed-form expressions for the marginal or joint posterior distributions is
intractable. Instead, posterior quantities are estimated by MCMC, specifically via Gibbs sampling
(Gelfand & Smith, 1990). We discuss how to sample from the conditional posteriors necessary
for Gibbs sampling.

In practice, it is often useful to treat some groups of parameters as blocks to reduce autocor-
relation in the Markov chain (Roberts & Sahu, 1997). Previously, we have found that taking the
grand mean and the random effects together as a block greatly speeds convergence and reduces
the autocorrelation in MCMC (Rouder & Lu, 2005; Lu, Sun, Speckman, & Sun, submitted). Let
µ = (µ(h), µ(f ))t , α = (α(h)

1 , α
(f )
1 , . . . , α

(h)
I , α

(f )
I )t , and β = (β(h)

1 , β
(f )
1 , . . . , β

(h)
I , β

(f )
J )t ; where I

and J are the number of participants and items, respectively. With this notation, the vector of
additive components is given by λ = (µt ,αt ,β t )t .

To simplify Gibbs sampling, we follow the data-augmentation method of Albert and Chib
(1995) (see Rouder & Lu, 2005, for a tutorial review). The method is based on positing a latent



JEFFREY N. ROUDER ET AL.

D
en

si
ty

 o
f P

rio
r

0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Correlation Coefficient

FIGURE 3.
Marginal prior on correlation coefficient. This prior does not depend on the choice of ω and has increased mass for
extreme values.

vector of normally distributed observations. Let X denote the design matrix that relates the block
of parameters (λ) to observations. Let y denote the vector of observations. Note that

Pr(yk = 1) = �([Xλ]k),

where k = 1, . . . , IJ indexes the row in the design matrix. For the ith participant observing the
j th item, k is defined as k = (i − 1)J + j . For our case, there are IJ latent observations:

wk

indep∼ Normal([Xλ]k, 1).

With this construction, it is fairly simple to show that Pr(yk = 1) = Pr(wk > 0). It is simpler to
sample from the full conditional distributions of the parameters conditioned on w than on y. We
do so below.

Independent Model

It is sufficient to derive the following full conditionals for analysis: (λ |σ 2
α,h, σ

2
α,f ,σ 2

β,h, σ
2
β,f ,

w), (σ 2
m,n | λ) for m = α, β and n = h, f , and (w | λ; y). These conditionals are specified below

in Facts A, B, and C. Proofs are straightforward.

• Fact A. Let Bα = diag(σ−2
α,h, σ

−2
α,f ) be the 2 × 2 diagonal matrix with diagonal elements

(σ−2
α,h, σ

−2
α,f ) and, similarly let, Bβ = diag(σ−2

β,h, σ
−2
β,f ). Finally, let BI = diag(0, 0, Bα, . . . ,

Bα, Bβ, . . . , Bβ) be the block diagonal precision matrix of λ with Bα repeated I times
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and Bβ repeated J times. With this notation, the full conditional distribution of λ is

λ | σ 2
α,h, σ

2
α,f , σ 2

β,h, σ
2
β,f ,w ∼ Nq(V I X tw, V I ), (8)

where q = 2(1 + I + J ) and V I = (X t X + BI )−1.
• Fact B. The full conditional distribution of σ 2

α,h is

σ 2
α,h | λ ∼ Inverse Gamma

(
I/2 + a,

∑
i

(α(h)
i )2/2 + b

)
, (9)

where a and b are parameters of the prior. The conditional posteriors for the other three
variances are expressed analogously.

• Fact C. The full conditional distributions of w1, . . . , wIJ are

wk | λ; y
indep∼

{
N−([Xλ]k, 1), yk = 0,

N+([Xλ]k, 1), yk = 1,
(10)

where N− and N+ denote normal distributions truncated at 0 from above and below,
respectively.

Gibbs sampling was implemented in the R statistical language (R Foundation, www.r-pro-
ject.org). To sample these conditionals, it is necessary to sample from a multivariate normal,
an inverse gamma, and a truncated univariate normal. Sampling from a multivariate normal is
provided in the MASS package. Sampling from an inverse gamma is accomplished by taking
the reciprocal of samples from a gamma distribution. Sampling a truncated normal may be
accomplished by the inversion method (Devroye, 1986): to sample from the Y ∼ N (µ, σ 2)
distribution truncated at (a, b), sample a uniform variate U and take

Y = σ�−1

(
U

[
�

(
b − µ

σ

)
− �

(
a − µ

σ

)]
+ �

(
a − µ

σ

))
+ µ.

In this expression, one may take a = −∞ or b = ∞.

Correlated Model

It is sufficient to derive the following full conditional distributions for analysis: (λ | �α,�β,

w), (�α | λ), (�β | λ) and (w | λ; y). The last of these conditionals has already been provided as
Fact C. The first two are presented below as Facts D and E.

• Fact D. Let BC be the block diagonal matrix denoting the precision of λ given by

BC = diag(0, 0,�−1
α , . . . ,�−1

α ,�−1
β , . . . ,�−1

β ),

where �−1
α is repeated I times and �−1

β is repeated J times. With this notation, the full
conditional distribution of λ is

λ | �α,�β,w ∼ Nq(V C X tw, V C), (11)

where q = 2(1 + I + J ) and V C = (X t X + BC)−1.
• Fact E. Let αi = (α(h)

i , α
(f )
i )t , and let Sα = ∑

i αiα
t
i be the 2 × 2 matrix formed by

summing the outer products. The full conditional distribution of �α is

�α | λ ∼ Inverse Wishart(I + m,� + Sα). (12)

The condition posterior for �β is expressed analogously.
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This model was also implemented in R, Sampling from the inverse Wishart distribu-
tion was provided by the MCMC package. Source code for both models may be found at
web.missouri.edu/∼umcaspsychpcl/code.

Simulation Studies

To get a reasonable idea of the performance of the two models, we simulated data with three
basic relationships: strong positive correlation (ρ = .9), strong negative correlation (ρ = −.9) ,
and independence (ρ = 0). We chose these values as they seem to span the range of plausible
values. Crossing these three with the two types of random effects (participants and items) yields
nine variants. True values of grand-mean parameters were set to µ(h) = .75 and µ(f ) = −.75,
which is typical of data in the literature. True values of the variance of participant and item random
effects were .5. The literature gives little guidance as to the choice of these variances, and it seems
prudent to set these too high rather than too low. For each of the nine variants, we simulated the
case of 30 hypothetical participants tested with 20 old items and 20 new items. These sample sizes
are atypically small for the majority of behavioral studies. They are, however, more typical of
cognitive neuroscience research on special populations (e.g., Alzheimer’s patients) and research
with functional imaging. Smaller sample sizes are ideal for the simulation study as they highlight
the influence of the priors.

Simulations proceeded as follows. First, random participant and item effects were drawn
from normals as discussed above. From these random effects, true participant-by-item values
of hij and fij were calculated. These participant-by-item probabilities were used to generate
Bernoulli-trial outcomes, which served as data. These data were then analyzed with the two
Bayesian models and an aggregation method as discussed below. After results were tabulated, a
new replicate experiment was performed. There were 400 replicate experiments for each of the
nine variants.

Analysis

Conventional analysis was done by two methods. In one case, we aggregated across items to
produce participant-specific sensitivities. In the second case, we aggregated across participants
to produce item-specific sensitivities. Whereas the variance across items and across participants
are equal, these two methods produced comparable results. Therefore, we report only the case for
aggregation across participants. Conventional estimates from item aggregation may be compared
against true participant-level effects, µ(h) + α

(h)
i − µ(f ) − α

(f )
i .

The independent model was implemented as previously discussed. All additive effects in
the Gibbs sampler were initialized with 0; all variances were initialized with 1. Chains were run
for 3000 iterations with the first 500 serving as burn-in. Figure 4 provides an assessment of these
choices. The upper row shows sample paths for a few parameters (µ(h), α

(f )
10 , and σ 2

β,f ). The
lower row shows autocorrelation for samples after burn-in. Convergence is rapid for the blocked
parameters and a bit slower for the variance parameters. The length of the chains and choice
of the burn-in period seem appropriate for estimating posterior means, which is the objective in
these simulation studies. The simulated data analyzed in Figure 4 had true positive correlation.
The displayed convergence is typical for the other relationships between random effects as well.

The correlated model was implemented in a similar fashion. The main difference was for
each simulated data set; there were separate analysis for each of three values of ω. The values
of burn-in and chain length were the same as with the independent model. Convergence in this
model was fairly quick for all three values of ω, especially for the blocked parameters. Figure 5
shows the case when the true random effects have strong true positive correlation and ω = 1.
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FIGURE 4.
Chain convergence in the independent model with strong positive correlations among both participant and item random
effects. The top row shows MCMC values for selected parameters. The vertical line denotes the end of the burn-in period.
The bottom row shows autocorrelations of select parameters after burn-in. The speed of convergence is typical for other
parameter and other relationships between random effects.

The displayed convergence is typical for the other relationships between random effects and the
other values of ω as well. The two right columns show chains for parameters σ 2

f,β and ρα . For
each cycle, MCMC values of the precision matrices were inverted to yield values of covariance
matrices, from which variances and correlations were computed.

Results

Estimation of Sensitivity

One objective is to compare these models with conventional aggregation. To that end, we
examined the accuracy of each method’s estimates of individual-level d ′. For each individual,
hierarchical estimates were calculated from posterior means as µ̂(h) + α̂

(h)
i − µ̂(f ) − α̂

(f )
i . Ac-

curacy of these estimates was assessed by root-mean-square error (RMSE), where the mean is
over participants and replicate experiments. These RMSE values are plotted in Figure 6. The five
lines correspond to the five different estimation methods (correlated model with three different
values of ω, independent model, and aggregation). The values are plotted for each of the nine
relationships. There are a number of noteworthy trends: the poor performance of the conventional
method; the intermediate performance of the independent model; and the dependency of the
correlated model on the choice of ω. Insight into these trends is provided by contour plots of
residuals (Figure 7). Each contour plot is derived from a scatter plot of residual sensitivity as a
function of true sensitivity. The scatter plots themselves contain 12,000 points (30 participants
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FIGURE 5.
Chain convergence in the correlated model (ω = 1) with strong positive correlations among both participant and item
random effects. The top row shows MCMC values for selected parameters. The vertical line denotes the end of the burn-in
period. The bottom row shows autocorrelations of select parameters after burn-in. The speed of convergence is typical
for other parameters, other values of ω, and other relationships between random effects.

by 400 replications), which is a large number for inspection. The contours are bivariate kernel
density estimates of the scatter plot points. Six contour plots are shown. Those on the left, mid-
dle, and right are from aggregation, the independent model, and the correlated model (ω = 1),
respectively. Those on the top and bottom rows are for the (0, 0) and (−.9,−.9) relationships.

From the contour plots, it is evident that the poor RMSE performance of the aggregation
method is due to the underestimation bias (left column). Underestimation increases linearly with
sensitivity: estimated values were about 77% of true values. Contour plots for the two hierarchical
models are shown. The independent model (middle column) has improved performance relative to
aggregation. The residuals, however, tend toward the diagonal, which indicate an over-shrinkage
bias. When the participants’ true sensitivity is low in value, the model overestimates sensitivity.
Likewise, when the true value is high in value, the model underestimates sensitivity. Although not
shown, further analysis reveals that over-shrinkage in sensitivity is the result of over-shrinkage in
both α(h) and α(f ). Fortunately, over-shrinkage bias is not asymptotic; it reduces with increasing
sample size. Therefore, as the sample size increases, the accuracy advantage of the hierarchical
model increases over aggregation.

The results with the correlated model depend on the choice of ω (see Figure 6). In the case
that ω = 10, the correlated model performed relatively poorly, whereas for ω = 1 and ω = .1, the
correlated model performed well. This result is not too surprising. The value of ω scales the prior
on the random-effects variance. The true value of random effect variance was set to .5, which is
the marginal median of the inverse Wishart prior for ω ≈ .23. Not surprising, choices of ω = .1
and ω = 1 give relatively good results whereas the prior with ω = 10 places too much mass away
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FIGURE 6.
Estimation accuracy as a function of relationship between random effects for five methods (aggregation, independent
model, and correlated model with ω = (.1, 1, 10)). The nine relationships are indicated by an ordered pair (i, j ) where i

denotes the correlation among participants, i = (0, .9,−.9), and j denotes the correlation among items, j = (0, .9,−.9).

from the true value. Figure 7, right panel, shows that over-shrinkage is present for the correlated
model when the random effects are independent, but less so when they are negatively correlated.

In Figure 6 the largest difference for the methods occurs when participant effects are posi-
tively correlated. In this case, not only does the correlated model with appropriate ω outperform the
independent model, the amount of gain decreases with ω. The reason for this behavior, however,
is somewhat artifactual. Participant’s sensitivity is given by d ′

i = (µ(h) − µ(f )) + (α(h)
i − α

(f )
i ).

Strong positive correlation implies that α
(h)
i nearly equals α

(f )
i , which, in turn, implies that d ′

i

nearly equals µ(h) − µ(f ). Hence there is very little variability in participants’ true sensitivity.
Priors that bias the variance of the participant random effects toward zero also reduce the variance
of α

(h)
i − α

(f )
i . This downward bias in the variance of α

(h)
i − α

(f )
i leads to better estimates of d ′

i .
Although priors with high values of ω lead to better estimation of d ′

i in this case, they may lead
to poor estimation of α

(h)
i and α

(f )
i themselves.

Variability and Correlation among Random Effects

In this section we assess the estimation of the variability and correlation among random
effects. Both hierarchical models have random effect variance parameters. For the independent
model these parameters are (σ 2

α,h, σ
2
α,f , σ 2

β,h, σ
2
β,f ). For the correlated model, these parameters

are the diagonal elements of �α and �β . In the simulations, the true variance of all random
effects was set to .5. Figure 8, left panel, shows the average posterior mean of participant variance
parameters. These estimates are not ideal. Those from the independent model overestimate the
true variance value by about 10%; the estimates for the correlated model are affected by the
choice of ω, and in a reasonable way. Whereas ω denotes prior scale on variance, it is expected
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FIGURE 7.
Residuals for three methods and two relationships. Left, middle, and right columns show residuals from aggregation, the
independent model, and the correlated model (ω = 1), respectively. Top and bottom rows show residuals for relationships
(0, 0) and (−.9,−.9), respectively. Contour plots are derived from scatter plots of residuals (estimated sensitivity–true
sensitivity) as a function of true sensitivity.

that large values of ω lead to an overestimation of variance. Figure 8 shows estimates for two
relationships and these are typical of the other relationships as well.

The right panel shows estimates for correlation. Population-level estimates of correlation
are only provided by the correlated model. Overall, all methods revealed very low correlations
for the (0, 0) relationship and more extreme correlations in the appropriate directions for the
(.9,−.9) relationship. Estimated correlation also varied with ω. Estimates of correlation were
biased toward zero for larger values of ω and closer to true values for smaller values.

Analysis of a Data Set

We compared the hierarchical Bayesian model and aggregation estimates in a reasonably
sized recognition memory experiment. The main goal of the experiment was to assess the effect
of attention on memory retrieval. Participants were asked to divide their attention between the
recognition memory task and a secondary task. We manipulated the degree of attention on each
task through instructions. For some items, participants were instructed to devote all their attention
to the memory task; for other items, attention was to be divided either 80% to 20%; 50% to 50%,
or 20% to 80% across the memory and secondary tasks. Our concern is establishing whether there
is an effect of the attention instructions on recognition memory and, if so, establishing whether
the effect is on hits or false alarms.
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Estimated variances (left) and correlations (right) of random effects in the hierarchical models. See the text for details.

Details of the experiment are as follows: Thirty-four participants were tested on 104 old
and 104 new items. The attention instruction was manipulated within subjects but was blocked
within the list; i.e., participants first studied a set and were tested at one attention level, then
they studied a second set and were tested at a second attention level, and so on. There was one
additional independent manipulation: the type of secondary task. Half of the participants indicated
the location of an asterisk on the screen as a secondary task. The asterisk was presented at one of
three locations and participants had to respond by depressing one of three keys below their right
hand. As soon as the response to the asterisk was made, the asterisk shifted to a new location
prompting a new response. The secondary task was easy and straightforward and participants
were able to perform it simultaneously with the memory recognition task. In the recognition task,
participants indicated whether target items were old or new by depressing one of two keys below
their left hand. The other half of the participants performed a tone-identification secondary task.
One of three tones (high pitched, medium pitched, or low pitched) was presented and participants
depressed a corresponding key with their right hand while indicating their memory recognition
response with their left hand. Crossing the two independent manipulations (four instructions ×
two secondary tasks) yields eight distinct conditions. We expanded the hierarchical Bayesian
model to account for these eight conditions:

hijk = µ
(h)
k + α

(h)
i + β

(h)
j ,

fijk = µ
(f )
k + α

(f )
i + β

(f )
j ,

where i = 1, . . . , 34 indexes participants, j = 1, . . . , 208 indexes items, and k = 1, . . . , 8 in-
dexes conditions.

Figure 9 shows the effect of condition on sensitivity d ′. The darkest bars are from the
correlated model (ω = 1, run length of 10,000 iterations, burn-in of 1000 iterations). Two con-
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FIGURE 9.
Estimates of condition sensitivity from the correlated model (ω = 1) and two aggregation methods.

ventional aggregation measures are also shown. The grey bars show a double aggregation measure
in which grand aggregate hit and false alarm rates were computed for each condition. Sensitivity
was estimated for each condition from these aggregates according to (3). The light bars show an
item aggregation measure in which aggregate hit and false alarm rates were computed for each
participant-by-condition pairing. Sensitivity was estimated for each of these pairings according to
(3) after half a count was added to all event frequencies (see Footnote 1). These sensitivities were
averaged across participants to produce condition-specific sensitivity estimates. The aggregated
estimates are between 10% and 20% less in value than the comparable Bayesian estimates. The
decrease reflects asymptotic bias from aggregation. The different estimation techniques all reveal
a main effect for the divided-attention manipulation.

Figure 10 shows condition effects on hits (µ(h)) as a function of that on false alarms (µ(f )).
The open and closed points are from asterisk and tone secondary tasks, respectively. It is evident
from the figure that the mnemonic increase with attention is attributable to both an increase in hit
rate and a decrease in false alarm rate; i.e., a mirror effect. From a psychological perspective, the
results indicate that participants adjust their criterion based on the amount of attention deployed.
As attention is increased, sensitivity (d ′) increases, and so does the criterion.

A second set of theoretical questions concerns correlations of participant and item effects.
Figure 11, top-left, shows the individuals’ effects on hits (α(h)) as a function of that on false alarms
(α(f )). The sample correlation for these points is −.37, indicating the possibility of a participant-
based mirror effect. To provide a test of this possibility, we plotted the posterior of the correlation
coefficient from �α as estimated from the MCMC outputs (bottom-left). The dotted vertical
lines indicate the 95% credible interval on the posterior. Because the value of zero is within
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mirror effect across the attention levels.

this interval, the results do not provide sufficient evidence to generalize this participant-based
mirror effect to the population. The right column of Figure 11 provides analogous information
about item effects. The sample correlation is −.22; the 95% credible interval on the posterior of
the correlation coefficient from �β includes the value of zero indicating insufficient evidence to
generalize this correlation.

We have also analyzed the data with ω = .1 and ω = 10. There were no qualitative differ-
ences with these choices from the reported results in Figures 9 to 11.

General Discussion

In this paper we have presented two Bayesian hierarchical models for the analysis of
recognition memory data with the theory of signal detection. These models offer significant
practical and theoretical advantages over the conventional technique of aggregation. The most
salient of these is accurate estimation of participant and item random effects. Accurate estimation
of participant effects is desirable because it is of use in individual-difference studies. Studying the
relationship between mnemonic ability and other cognitive variables often leads to better theories
of cognition and its variability across populations (e.g., Kane et al., 2004; Salthouse, 1996).
Accurate estimation of item effects is desirable because it leads to better theories of memory and
word processing (e.g., Gillund & Shiffrin, 1984; Spieler & Balota, 1997).
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Participant and item effects. Top-left: Scatter plot of individuals’ effects on hits (α(h)) as a function of that on false
alarms (α(f )). Filled and open circles are from the asterisk and tone secondary tasks, respectively. Bottom-left: Posterior
distribution of correlation coefficient from �α . The dotted vertical lines indicate the 95% credible interval on correlation.
Right column: Analogous plots for item effects.

The correlated model seems superior to the independent model if one has a reasonable idea
of the scale of random effects a priori. The following argument may be useful as a rough guide:
In order to gain statistical power, researchers typically design experiments such that hit and false
alarm rates are not too extreme. True false alarms are, hopefully, greater than .05 while true hit
rates are, hopefully, less than .95. These constraints limit true d ′ to about 3. Within this context, it
seems unreasonable that the participant and item variation would be too great. A maximal upper
limit on the standard deviation of random effects may be around 2. The analysis of the our data
set indicated that it is far less. Appropriate choices of ω range between ω = .1 and ω = 1.5.

Even though these hierarchical models offer a dramatic improvement over conventional
techniques in the field, they are not fully satisfactory. The independent model is biased against
correlation in random effects. The correlated model must be specified with prior information about
the scale of random effects. Gross misspecification will lead to poor performance. Hopefully,
advances in Bayesian hierarchical models with normally distributed priors will provide for more
suitable priors (cf., Sun & Berger, 1998, 2006). Until then, the two models serve as reasonable
alternatives.

The models presented here are termed equal-variance signal detection models because the
variance of the new-item distribution is the same as that of the old-item distribution (see Figure 1).
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The equal-variance model provides a convenient measure of mnemonic performance. Fortunately,
it may be tested by assessing confidence, varying payoffs, or varying stimulus probabilities. In
studies with these manipulations, the standard deviation for old items is estimated to be 1.25 as
large as that for new items (Glanzer, Kim, Hilford, & Adams, 1999; Heatcote, 2003; Ratcliff,
Sheu, & Grondlund, 1992). The hierarchical signal detection models can be generalized to reflect
arbitrary variance for the old-item distribution. A straightforward approach is to introduce a scale
parameter to the standard normal distribution function in (1). Hit and false alarm probabilities are

H = �

(
d ′ − c

σ

)
, (13)

F = �(−c). (14)

The rest of the hierarchical Bayesian model can be specified analogously. Moreover, the latent
variables and conditional posterior distributions need only minor modifications for analysis. We
provide these modifications in the Appendix.

Appendix

For the unequal-variance signal detection model, H and F are given in (13) and (14),
respectively, where σ is the standard deviation of the old-item distribution. There will be no
changes on the prior distributions in the hierarchical model.

The following latent variables are convenient in analysis of the unequal-variance model.
Let indicator variable Dk = 1 if a signal is presented, and Dk = 0 otherwise. The distribution of
a latent variable is

wk

indep∼ Normal([Xλ]k, σ
2
k ),

where

σ 2
k =

{
σ 2, Dk = 1,

1, Dk = 0.
(15)

The prior on σ 2 is σ 2 ∼ Inverse Gamma(a0, b0). Hence, for Bayes computation, the full
conditional posterior distribution of σ 2 is

σ 2 | λ,w ∼ Inverse Gamma

(
IJ∑
k=1

Dk/2 + a0,
1

2

IJ∑
k=1

Dk(wk − [Xλ]k)2 + b0

)
.

The conditional distributions for other parameters are derived as follows: Fact B and Fact E
hold for both equal-variance or unequal-variance models without modification. Facts A, C, and
D need only minor modification and are presented below as Fact A.2, Fact C.2, and Fact D.2.
Proofs are straightforward.

• Fact A.2. Generalization of Fact A. Let �w denote a diagonal matrix with elements σ 2
k ,

where σ 2
k is defined in (15). The full conditional distribution of λ is

λ | �w, σ 2
α,h, σ

2
α,f , σ 2

β,h, σ
2
β,f ,w ∼ Nq(V (X t�−1

w w), V ),

where q = 2(1 + I + J ) and V = (X t�−1
w X + B)−1.
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• Fact C.2. This is a generalization for Fact C. The distribution of (w | λ; y) may be given
in terms of components w1, . . . , wIJ :

wk | λ; y
indep∼

{
N−([Xλ]k, σ 2

k ), yk = 0,

N+([Xλ]k, σ 2
k ), yk = 1,

where N− and N+ denote normal distributions truncated at 0 from above and below,
respectively, and σ 2

k is defined in (15).
• Fact D.2. With the notation in Fact D, the full conditional distribution of λ is

λ | �w,�−1
α ,�−1

β ,w ∼ Nq(V X t�−1
w w, V c),

where q = 2(1 + I + J ) and V c = (X t�−1
w X + Bc)−1.
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