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Abstract

Psychological theories are statements of constraint. The role of hypothesis testing in

psychology is to test whether specific theoretical constraints hold in data. Bayesian

statistics is well-suited the task of finding supporting evidence for constraint, because it

allows for comparing evidence for two hypotheses against one another. One issue in

hypothesis testing is that constraints may hold only approximately rather than exactly,

and the reason for small deviations may be trivial or uninteresting. In the large-sample

limit, these uninteresting, small deviations will lead to the rejection of a useful constraint.

In this paper, we develop several Bayes factor one-sample tests for the assessment of

approximate equality and ordinal constraints. In these tests, the null hypothesis covers a

small interval of nonzero but negligible effect sizes around zero. These Bayes factors are

alternatives to previously-developed Bayes factors, which do not allow for interval null

hypotheses, and may especially prove useful to researchers who use statistical equivalence

testing. To facilitate adoption of these Bayes factor tests, we provide easy-to-use software.
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Bayes Factor Approaches for Testing Interval Null Hypotheses

The usefulness of psychological theories is determined by the extent to which they

make constrained predictions about data. In many cases, these constraints are ordinal in

nature: participants are predicted to perform better in one condition than another, or

participants with a certain characteristic are predicted to perform better than those

without this characteristic. In some cases, the predictions are stronger; they are about

equalities. One example is the Fechner-Weber law, which describes the amount of

intensity, ∆I, that must be added to a background of intensity I for successful

discrimination. The law states that performance varies as ∆I/I; the constraint is that

when the intensity of an increment and background are both multiplied by the same

constant, detection performance will be the same. Another example of a theoretically

interesting equality constraint is the lack of effect of gender on certain tasks (Shibley

Hyde, 2005, 2007) or a lack of interaction across specified manipulations (e.g., additive

factors, Sternberg, 1969). Furthermore, the assessment of formal models – for example,

structural equation models – is a matter of assessing equality constraints. The assessment

of both equality and ordinal constraints is the primary use of hypothesis testing in the

psychological sciences. In this paper, we develop Bayes factor methods for evaluating

evidence for constraints in data. In the following development, we first focus on assessing

evidence for equality constraints, and then generalize the approach to ordinal constraints.

Our development of Bayes factor tests for equality constraints is motivated by

several common critiques of null-hypothesis significance tests (NHST). One critique of

testing for equality constraints is that such constraints are not plausible; that is, small

violations of equality constraints always exist (Cohen, 1994; Meehl, 1987). A second

critique is that null hypothesis significance tests are asymmetric in that equality

constraints may only be rejected and not accepted. These two critiques provide rationales
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for statistical equivalence tests, in which approximate equality constraints serve as the

alternative hypothesis rather than the default, null hypothesis. The third critique is that

the asymmetry in choosing default hypotheses, whether the null or alternative, leads to

inference that overstates the evidence against the default hypothesis (Berger & Sellke,

1987; Rouder et al., 2009; Sellke, Bayarri, & Berger, 2001; Wagenmakers, 2007). This

third critique serves as motivation for the use of Bayes factors. In this paper we develop

Bayes factor tests that allow for equivalence regions.

Nil Hypotheses, Null Hypotheses, and Equivalence Regions

Equality constraints may be represented as point-null hypotheses. Without any loss

of generality, any point hypothesis can be expressed as a nil hypothesis; that is, the

statement that a parameter of interest is zero (Cohen, 1994)1. Nil hypotheses are

statements such as: one variable has no effect on an another; there is no difference

between two variables; there is no association between two variables; or, the parameter

has a specific value. In order to mitigate confusion, we will use the following terminology

throughout: the nil hypothesis refers to the point hypothesis that the parameter is

identically 0. The null hypothesis is more general: it may be restricted to a nil hypothesis

or may allow for values which deviate slightly from the nil. The null hypothesis therefore

may capture nonzero effects that are too small to be of interest. A third type of

hypothesis, the default hypothesis, refers to a hypothesis assumed true unless sufficient

evidence is found against it. The nil hypothesis is the default hypothesis in most null

hypothesis significance tests, but not in statistical equivalence testing.

Cohen (1994), among others (Berger & Delampady, 1987; Berkson, 1938; Meehl,

1978), offers the viewpoint that nil hypotheses never hold to an arbitrary level of

precision; that is, a priori nil hypotheses are false. For instance, the Fechner-Weber law,

discussed above cannot hold to arbitrary precision because at some level, the process
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becomes discretized (if for no other reason than light itself is quantal in nature). As

another example, a researcher might be interested in whether a particular genetic

mutation correlates with educational outcomes. Even if the gene codes for something

unrelated – say, hair growth rate – it seems unlikely that in the population, people with

the mutation have exactly the same educational outcomes as those without. The main

point in these examples is that the nil will fail for trivial or uninteresting reasons. Meehl

(1978) refers to the trivial relationships that variables have to others as the “crud factor”

in psychological research.

In this paper, we take as a default position that the nil never holds to arbitrary

precision. The fact that nil hypotheses may break down, however, is not an argument

against their usefulness in many areas of psychological research. Often these nil

hypotheses are good approximations and are exceedingly useful for guiding theory

development. For instance, even though the Fechner-Weber Law breaks down for very low

intensities, it may nonetheless provide appropriate constraint on the mechanisms of

perceptual decision making. Likewise, even though the equality of men and women in the

performance of a certain task may break down in some limit, it is still useful in suggesting

that the mental processing underlying the task may not vary across gender. Hence, the

argument that the nil hypothesis is never exactly correct is not an argument against

proposing constraints. The fact that the nil hypothesis is never true is, however, an

important consideration when performing statistical tests. A key goal in our development

are methods that do not reject null hypotheses if the failure is due to trivially small effects.

One solution is to abandon point hypotheses altogether. Hodges and Lehmann

(1954) suggested establishing a region of parameter values around the nil hypothesis that

are not “materially significant” – that is, although the true parameter value may indeed

be slightly different from the nil hypothesis value, the nil hypothesis would still be

preferred for parsimony’s sake. This same logic is adopted by the statistical equivalence
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test (SET) paradigm (Rogers, Howard, & Vessey, 1993; Wellek, 2003). In SET, an

“equivalence” region is defined on a parameter of interest. This equivalence region

contains all parameter values which may be considered too small to be meaningfully

different from 0. The researcher specifies this equivalence region before analysis and its

size is informed by substantive considerations in the domain at hand.

One way to formulate a statistical equivalence test is with confidence intervals, as

shown in Figure 1. The equivalence region in the figure is defined from -0.2 to 0.2. All

parameter values within these bounds are considered “equivalent” to 0. The default

hypothesis is nonequivalence: that is, the parameter is outside the equivalence region.

Because the nonequivalence hypotheses is default, we reject nonequivalence only with

sufficient evidence and retain nonequivalence otherwise. Evidence in this formulation is

the relationship of confidence intervals to the equivalence bounds. If the 100(1− 2α)%

confidence interval lies within the equivalence region, then nonequivalence is rejected.

Shown in the figure are hypothetical CIs for four samples. The confidence intervals for

Samples A, B, and D do not provide sufficient evidence to reject nonequivalence. The

confidence interval for Sample C, however, only contains values in the equivalence region.

For Sample C, the nonequivalence null hypothesis may be rejected in favor of equivalence.

Relative Evidence

The methods discussed above are all based on the idea of controlling the rates of

certain kinds of errors. This is the traditional NHST approach; Type I error rate is held at

a rate of α, or CIs are built which fail to cover the true value at a rate of α. However, it is

often useful in scientific discourse to have methods which measure the evidence for

positions rather than make a binary choice between them. In both Bayesian and freqentist

statistics, the likelihood ratio is used as a measure of relative evidence between two

hypotheses (Royall, 1997). Measuring relative evidence is fairly straightforward if both
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hypotheses are points. For instance, suppose wish to compare the evidence for the

hypothesis that µ = µa versus the hypothesis that µ = µb in a one-sample design. The two

hypotheses may be written as two models:

Ha : yi
iid∼ Normal(µa,σ

2),

Hb yi
iid∼ Normal(µb,σ

2),

where µa, µb, and σ2 are prespecified values. The likelihood ratio quantifying the evidence

for hypothesis Ha relative to hypothesis Hb, which we abbreviate Bab, is

Bab =
Pr(Y | Ha)

Pr(Y | Hb)
, (1)

where Y = (y1, y2, . . . , yN ) is a vector of observations. Because the data are assumed to

be normally distributed and conditionally independent, we use the product of normal

distribution functions2 φ(y | µ,σ2) to form the likelihood ratio:

Bab =

∏N
i=1 φ(yi | µa,σ2)

∏N
i=1 φ(yi | µb,σ2)

.

The notion that relative evidence is provided by the likelihood ratio is used in both

frequentist and Bayesian paradigms.

Because most hypothesis tests in psychological research are built on the premise of

controlling Type I rates, rather than on the basis of evidence, it is interesting to ask how

much relative evidence is there in rejections of hypotheses in NHST testing (Lindley, 1957,

Sellke, Bayarri, & Berger, 2001). For example, consider the case of a researcher who

observes a one-sided t value of 1.75 with 30 observations. We take as Hb the nil that µ = 0

and as Ha an alternative that µ = .2σ (that is, the standardized effect size is .2), where σ,

the standard deviation, is an unknown. In this case, Pr(Y |Hb) is the density at 1.75

under the central t distribution. The Pr(Y |Ha) is the density at 1.75 under a noncentral t

with noncentrality parameter .2
√
30. These areas are shown in Figure 2, and the relative
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evidence in this case, the ratio, is Bab = 3.55. What strikes us is that the relative evidence

is so small in favor of the alternative given that null is rejected.

The above evidence ratio is limited to the comparison of a nil and a specific

alternative in which the effect size is .2. Instead of asking about a single prespecified

alternative, we could ask if there is some other alternative in which there is sizable

evidence for the alternative. In fact, one can compute the relative evidence for all other

effect sizes against the nil, but for the observed p value and N no alternative achieves a

relative evidence of more than about 4.4 against the nil. Even though researchers may

reject the nil with significance testing, there is no single alternative for which the data are

dramatically more probable.

It is also useful to assess the relative evidence in SET, and by extension, inference

by CI. Although SET has no p values to compare, we can examine relative probabilities of

rejecting nonequivalence. Suppose we collect a sample of 70 observations, and on the basis

of these data, reject nonequivalence with an equivalence region of [-0.2,0.2]. If the true

mean were just outside the equivalence region, we would only reject nonequivalence about

.56% of the time. However, rejecting nonequivalence is not that much more common

under the best possible equivalence scenario, µ = 0. If µ = 0, then we will correctly reject

nonequivalence only 2.2%. This, the evidence ratio provided by our rejection of

nonequivalence is only 2.2/.56 ≈ 4. Our rejection of the nonequivalence was based on

relatively light evidence.

Bayes Factors

In Bayesian inference, the relative evidence measure B is known as the Bayes factor.

We previously developed the Bayes factor for simple point hypotheses. In most

applications, however, alternative hypotheses are composites in which parameters are

assumed to take on a range of values. For example, suppose under the alternative Ha the
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value of µ is allowed to range across all real numbers. In Bayesian statistics, probability is

interpreted as uncertainty; to compute the probability of data under a hypothesis, we

average over the uncertainty in the parameters. The probability of data under the

hypothesis is thus:

P (Y |Ha) =

∫

µ
P (Y|µ)f(µ)dµ. (2)

The term P (Y|µ) is the conditional probability density for the data given the parameter µ

(the likelihood), and the term f(µ) is the prior probability density for µ. A more general

formulation, for when a vector of parameters is free to vary under a hypothesis H, is

P (Y |H) =

∫

θ∈Θ
P (Y |H,θ)f(θ|H)dθ, (3)

where θ is a vector of parameters, and Θ is the space across which the parameters vary.

The function f is the prior density of θ and describes the researchers belief or uncertainty

about the parameters before observing the data. In Bayesian analysis, the specification of

f is critical to defining the hypotheses, and is the point where subjective probability

enters Bayesian inference. We realize that frequentists may object to the

conceptualization of probability as capturing a degree or measure of belief. The argument

for subjective probability is made most elegantly in the psychological literature by

Edwards et al. (1963). We note here that subjective probability stands on firm axiomatic

foundations, and leads to ideal rules about updating beliefs in light of data (Cox, 1946; De

Finetti, 1992; Gelman, Carlin, Stern, & Rubin, 2004; Jaynes, 1986).

The marginal probability in Eq. (3) may be viewed as a weighted average across all

parameter values, with the weights for each parameter value is given by a prior

distribution. Priors that place greater weight on parameter values not concordant with

the data have lower marginal probability. This weighted averaging properly penalizes

flexibility in models in which a large set of parameters have some a priori weight (Myung,

2000). Flexible models may fit the data better (i.e. be preferred by the likelihood ratio)
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than more constrained ones, but they will also include prior weight over unlikely

parameter values. Averaging over the prior ensures that flexible models are properly

penalized for their flexibility.

This averaging across all parameter values also reveals a key difference between

Bayesian methods and frequentist methods: the interpretation of probability as

uncertainty licenses averaging. Parameters are treated as random quantities which have

distributions that may be marginalized. In frequentist methods, however, this averaging is

not licensed; other approaches, such as computing maximum likelihood values, are used.

In Bayesian inference, it is also possible to compute the odds of competing two

hypotheses against one another, given the observed data; e.g., P (Ha|Y )/P (Hb|Y ). This

quantity, the posterior odds is related to the Bayes factor:

P (Ha|Y )

P (Hb|Y )
= Bab ×

P (Ha)

P (Hb)
, (4)

where P (Ha)
P (Hb)

is the prior odds and describes the relative degree of belief in the hypotheses

before the data are observed. The Bayes factor describes how beliefs are to be updated.

Jeffreys (1961) and Kass (1993) note that the Bayes factor is ideal for reporting evidence

because it describes how researchers should change their beliefs regardless of what those

initial beliefs are. Prior odds provide readers and analysts a mechanism to add context as

to how evidence is to be interpreted. We wish to emphasize, however, that the Bayes

factor may be interpreted as the relative evidence contributed by the data, without

stipulating prior odds.

Bayes factor for nil hypotheses

In constructing Bayes factors, different hypotheses may be implemented as different

choices of priors over parameters. For example, the nil hypothesis may be implemented by

specifying a point prior over the parameter of interest. More interesting are the priors

under the alternative. It is common when using Bayesian techniques for parameter
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estimation to assume diffuse or “noninformative” priors (Gelman, Carlin, Stern, & Rubin,

2004) for these alternatives. These diffuse priors are used to minimize the influence of the

prior distribution on the posterior distribution. Noninformative priors are often improper,

meaning that they do not integrate to a finite number. A common improper,

noninformative prior for the mean of a normal distribution, for instance, is a constant

value over all real numbers. This constant prior corresponds to the assumption of absolute

ignorance; that is, that no value for the mean is a priori more likely than any other. As

long as the posterior distribution is proper, the impropriety of the prior poses no problem

for Bayesian parameter estimation.

For hypothesis testing, as opposed to estimation, the choice of a diffuse prior for the

alternative hypothesis is problematic. The reason is that the Bayes factor is the ratio of

the expectation of the likelihoods, taken over their respective priors. As the prior becomes

more and more diffuse, unlikely values dominate, making the expectation of the likelihood

approach 0. If the null hypothesis is a point, and the alternative prior is noninformative,

the point will be preferred, regardless of the data. Ironically, using “noninformative”

priors in Bayes factors leads to the predetermined result of always choosing the null

hypothesis (Lindley, 1957).

Jeffreys (1961) suggests placing priors on the standardized effect size, δ = µ/σ. In

this case, yi ∼ Normal(σδ,σ2). As Iverson et al. (2009) note, effect size has a natural scale

and proper priors for it are appropriate. The prior on the point nil is simply that the

effect size is exactly zero. One reasonable prior on the alternative might be that effect

sizes are distributed as a standard normal. This prior structure is inspired by the

knowledge that true effect sizes are typically not large, and that the analyst is agnostic to

the direction of any possible effect.

Although the standard normal is a reasoned choice, it is a thin-tailed distribution;

that is, large effect sizes, such as 5.0, are effectively excluded from consideration. A
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less-informative prior would not effectively preclude the possibility of large effect sizes. To

accomplish this goal, we use a distribution with fatter tails: the t distribution, as a prior

on effect size. As the degrees of freedom of the t distribution decrease, the tails of the t

distribution become fatter; with only 1 degree of freedom, the tails of the t distribution

are fat enough that the distribution has no expected value or higher-order moments. The

t(1) distribution is also known as the standard Cauchy distribution. The standard

Cauchy-distributed prior on δ quantifies an assumption that excessively large true δ

parameters are much less plausible than small effect sizes, but are still possible. We

express the prior structure as follows:

H0 : δ = 0

H1 : δ ∼ Cauchy(r = 1),

where r is a scaling parameter, and represents one-half the interquartile range of the

Cauchy. A Cauchy distribution with r = 1 is a standard Cauchy distribution.

A prior is also needed for σ2. Because σ2 is a parameter in both models, a

noninformative prior on it is both practical and desirable:

p(σ2) ∝ 1

σ2
,

where p(σ2) represents an improper prior density on σ2. The advantage of the 1/σ2 prior

is that it is the Jeffreys prior. Jeffreys priors have the desirable property that they impart

the same information, even if under transformations of parameter (Jeffreys, 1946).

Bayarri and Garcia-Donato (2007) called the combination of these priors on δ and

σ2 the Jeffreys-Zellner-Siow (JZS) prior to honor the contributions of Jeffreys (1961) and

of Zellner and Siow (1980), who extended the prior to the class of linear models. The JZS

model is depicted graphically in Figure 3A. The vertical line denotes the nil hypothesis at

δ = 0; the density is that of a Cauchy and denotes the prior on effect size size for the

alternative hypothesis. Rouder et al. (2009) call the associated Bayes factor the JZS
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Bayes factor. They provide expressions for the JZS Bayes factor for one- and two-sample

tests as well as a web applet for computation (http://pcl.missouri.edu/bayesfactor).

Consider the following real-world example of the differences between JZS Bayes

factor and NHST analysis. It is well-known that emotionally-evocative words are better

recognized in a memory experiment than emotionally neutral words (Murphy &

Isaacowitz, 2008). Although this increase in performance would seemingly indicate better

memory for these stimuli, this pattern may instead reflect response biases (Dougal &

Rotello, 2007; Thapar & Rouder, 2009). Thus, memory may be the same for both

emotional valence levels, but participants are simply biased to state that

emotionally-evocative words were studied more often than neutral words when guessing or

when responding with limited information. Thapar and Rouder, for example, fit a variant

of Luce’s Similarity Choice Rule (Luce, 1963) and found emotional valence effects on

response bias parameters but not in memory sensitivity parameters.

Grider and Malmberg (2008, Experiment 3) provide the following insightful test of

the equality of memory across emotional valence levels. Participants first study both

evocative and neutral words. At test, participants see a new word (the lure) as well as a

studied word (the target), and have to judge which was studied. In Grider and

Malmberg’s task, lures and targets always had the same emotional valence so that each

would be chosen equally likely in the absence of mnemonic information. With response

bias controlled, it is reasonable to conclude that an approximate equality of performance

supports the invariance of memory across emotional valence, and differences in

performance support differences in memory across emotional valence. They find mean

recognition accuracy for positive words (80%) was somewhat higher than mean

recognition accuracy for neutral words (76%). They interpreted these data with the aid of

a t test, finding a statistically significant effect of word valance (t(79)=2.24, p = 0.014,

δ̂ = 0.25). In fact, Grider & Malmberg used this result as part of their argument that



Bayes Factors 14

memory varies across emotional valence levels.

The JZS Bayes factor for these data, on the other hand, is 1.02, indicating no

preference for either a valence equality or a valence effect. The no-preference result here

comes about because the relative evidence is equivocal. The difference in means, 0.04, is

quite small (effect size of .25), and is unlikely under both the null or under an alternative

that effects have reasonable variance away from zero (the JZS alternative). Accordingly,

the rejection of the nil based on the p value is unwarranted because it does not account for

how likely the data are under reasonable alternatives. This readiness to reject the nil

hypothesis based on slight evidence is especially prominent for NHST of small effects with

large sample sizes (Grider and Malmberg’s sample size is, in fact, atypically large for a

repeated-measures design in cognitive psychology. More typical sample sizes are

approximately 25 participants).

One advantage the JZS Bayes factor has is consistency. In the large sample limit,

the JZS ratio will appropriately converge to infinity or 0 depending on whether the nil or

alternative is true. Consistency is not a property of conventional tests, because if the nil is

true in NHST, it can never be accepted, regardless of how much data is collected3.

Although consistency is an important property, the consistency of the JZS Bayes factor

has a critical drawback. The JZS null hypothesis is the nil hypothesis on the parameter of

interest. Hence, the relative evidence against the null hypothesis will grow without bound

as sample size increases unless the nil hypothesis is exactly true. If we adopt Cohen’s

proposition that nil hypotheses are always false, albeit sometimes for uninteresting or

trivial reasons, then the JZS Bayes factor will always yield support for the alternative,

with large enough sample size. In this regard, the JZS Bayes factor shares an unfortunate

property of NHST: it provides no means of assessing whether rejections of the nil are due

to trivial or unimportant effect sizes or are due to more substantial effect sizes.
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Bayes factor solutions to the nil hypothesis problem

In this section, we present three modifications of the nil hypothesis using the JZS

prior. These modifications are motivated by the concern that the nil hypothesis is never

true to arbitrary precision and is, therefore, inappropriate.

Overlapping hypotheses

Null hypotheses need not be restricted to nil hypotheses. Rouder et al. suggest a

Cauchy-distributed null hypothesis, but one with a much smaller scale than the

alternative (see Figure 3B). This null distribution is a distribution of effect sizes from

trivial or uninteresting causes. The resulting models are:

yi ∼ Normal(σδ,σ2) (5)

δ ∼ Cauchy(ri), (6)

p(σ2) ∝ 1

σ2
, (7)

where i indexes hypotheses. Researchers must specify ri for both the null and alternative

distributions prior to analysis. Specifications with r0 much less than r1 will be the most

useful as these capture the intuition that the spread of the negligible effect sizes is much

smaller than those under the alternative. The JZS priors result as r0 → 0 and r1 = 1.

Because for any r > 0, the prior distribution of parameter under the null and alternative

share common support, we call these priors the overlapping-hypotheses priors and the

resulting Bayes factor as the overlapping-hypotheses (OH) Bayes factor. Rouder et al

(2009) briefly mention this prior, but provide no development or analysis.

The computation of the OH Bayes factor is straightforward. Bayes factors are

transitive in the following sense: let H1, H2, and H3 be three hypotheses. The Bayes

factor for H1 relative to H3, B13 is

B13 = B12B23.
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Rouder et al. provide expressions for the Bayes factor of the the nil vs. a Cauchy with

scale r, which is denoted here as B01(r). The OH Bayes factor for the null vs. alternative

is computed by transitivity: B01 = B01(r0)/B01(r1).

The previous example from Grider and Malmberg (2008) provides an opportunity to

compare the JZS and OH Bayes factors in a real-world data set. The JZS Bayes factor

was 1.02, which is nearly equal evidence for both hypotheses. To implement the OH Bayes

factor we adopt the JZS setting for the alternative of r1 = 1. For illustration purposes, we

set the null to have a 1/10 the scale of the alternative, r0 = 0.1. Under this alternative

hypothesis, 50% of the effect sizes are between -0.1 and +0.1. With these prior settings,

the resulting OH Bayes factor is B01 = 2.25. The data are over twice as likely to have

come from the null hypothesis of negligible effects as from the alternative hypothesis of

substantive ones. In this case, OH Bayes factors are more weighted toward the null than

JZS Bayes factors. The reason for this is that the observed effect size δ̂ = 0.25 is more

consistent with the narrow r = 0.1 Cauchy distributed null than the point null.

Although the OH priors appear reasonable to account for negligible effects under

the null, there is a subtle but important problem in interpretation. In the JZS priors,

there was an unambiguous correspondence between true effect sizes and hypotheses. A

true effect size of exactly zero corresponded to only the nil; nonzero true effect sizes

corresponded to only the alternative. In the OH priors, this correspondence does not hold.

Because both hypotheses share a common support, any effect size may come from either

hypothesis. Even if a researcher knows the true effect size with absolute precision, it is not

possible to decide with certainty between the null and alternative hypotheses.

Consequently, the Bayes factor converges in the large sample limit to a finite nonzero

value. The dotted line in Figure 4 shows this behavior for the case that true δ = 1,

r0 = 0.1 and r1 = 1. The lines represent the Bayes factors for the median t value that will

be observed for an effect size δ = 1 as sample size grows. The OH Bayes factor approaches
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the ratio of the prior densities at δ = 1. In contrast, the JZS Bayes factor converges to

BF01 = 0, indicating that increasing the sample size will eventually lead to one

hypothesis, or the other, with certainty.

This undesirable limiting behavior of the OH Bayes factor is a direct consequence of

the fact that the hypotheses were constructed as overlapping hypotheses. Any given effect

size corresponds, to some extent, with both hypotheses. The ambiguity of true effect sizes

relative to the hypotheses is undesirable. To mitigate this problem, we develop hypotheses

that have exclusive support.

Non-overlapping hypotheses

The OH Bayes factor has properties that make it unsuitable for inference. The same

true effect size could be considered null, or not null, depending on whether it came from

the null or alternative distribution. This interpretability problem, along with the

consequence that the Bayes factor does not converge to either 0 or ∞, motivates the

development of a Bayes factor in which the null and alternative are mutually exclusive

ranges of values. We specify a set of priors that are non-overlapping and derive the

corresponding non-overlapping (NOH) Bayes factor as follows. To begin, consider the

model:

yi ∼ Normal(σδ,σ2) (8)

δ ∼ t(ν0) (9)

p(σ2) ∝ 1

σ2
. (10)

In this case, the model has been slightly modified so that the distribution on δ is t rather

than scaled Cauchy. The researcher must choose a value for ν0, the degrees of the t

distribution. Setting ν0 = 1 yields the JZS Cauchy prior; setting ν0 = ∞ yields a standard

normal prior (the unit-information prior of Rouder et al., 2009). This generalization

allows the model to subsume the two models suggested by Rouder et al.
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The null hypothesis H2 for the nonoverlapping (NOH) Bayes Factor is that the

effect size δ is within some range (−c, c) of 0. The alternative H3 is that the effect size is

not within this range.

H2 : δ ∼ t(ν0), δ ∈ (−c, c)

H3 : δ ∼ t(ν0), δ /∈ (−c, c)

The NOH Bayes Factor B23 is

B23 =

∫
δ∈∆2

∫
λ2(λ2)−

N
2 −1 exp

{
−N−1

2λ2 − 1
2λ2

(
t− δ

√
Nλ2

)2
}(

1 + (δ/r)2

ν0

)− ν0+1
2

dλ2dδ

∫
δ∈∆3

∫
λ2(λ2)−

N
2 −1 exp

{
−N−1

2λ2 − 1
2λ2

(
t− δ

√
Nλ2

)2
}(

1 + (δ/r)2

ν0

)− ν0+1
2

dλ2dδ

× 1− π2
π2

where ∆2 is the null region, and ∆3 is the complement of ∆2. The derivation of this

formula is shown in the appendix. To compute the Bayes factor B23 requires 3 integrals:

first, the integration with respect to λ2, then the integration with respect to δ for each

hypothesis. A closed form expression for the Bayes factor is not available, but the

integrals may be performed numerically. We discuss methods of computing this integral in

the appendix, and provide a convenient web applet for computing Bayes factors at

http://pcl.missouri.edu/bayesfactor.

Like the JZS Bayes Factor B01, the NOH Bayes Factor B23 is a function of only the

observed t and the sample size N . The researcher must supply the bounds of the null

hypotheses region (−c, c); this will be discussed later. Following Cohen’s suggestion

(Cohen, 1988) that 0.2 is a “small” effect size, our examples all use a null region of (-0.2,

0.2).

Figure 5 shows the NOH Bayes factor for the median observed t value for several

sample sizes and true effect sizes. The Bayes factor converges to the correct hypothesis for

all hypotheses except when the true effect sizes is exactly on a boundary (-0.2 and 0.2). In
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this case, the Bayes factor converges a finite constant which depends on the prior

distributions, because the data cannot differentiate between the two hypotheses. The

figure includes the NOH Bayes factor for the two extreme values of ν0, 1 and ∞,

corresponding respectively to a standard Cauchy prior and standard normal prior on δ.

The Cauchy prior marginally favors the null hypothesis, due to the heavier weighting of

larger effect sizes, but both priors lead to substantially the same result.

As a comparison to the JZS and OH Bayes factor, we return to the data of Grider

and Malmburg (2008). Recall that the observed t(79) was 2.24, and the observed effect

size was δ̂ = 0.25. Because the effect size is near the null effect range, we expect the NOH

Bayes factor to be more favorable to the null hypothesis than the other two Bayes factors.

Indeed, B23 = 3.63 indicating that the data show a reasonable amount of evidence for the

hypothesis that the true effect size is within (−0.2, 0.2). Whether Grider and Malmburg

would consider all null hypotheses in this interval to be negligible is not known, but the

Bayes factor nevertheless indicates that whatever effect exists is likely to be small.

A hybrid model

Previously, we have argued that (a) the nil point-null hypothesis is unlikely, and

perhaps impossible, and (b) there is a range of effect sizes around the nil hypothesis that,

from the researcher’s perspective, should be treated as null. If we accept (a), then (b)

naturally follows. However, we may accept (b) but deny (a): the two claims need not be

accepted together. This fact motivates the following generalization of the NOH null.

Consider the mixture model for the null shown in Figure 3D. Like the JZS point-null

model, there is point mass at δ = 0. However, like the NOH null model, small effect sizes

around the nil hypothesis are also considered null. We call this model the hybrid null

model. Let π0 be the mixing probability; π0 = 1 corresponds to the case where the null

mixture consists solely of the JZS null and π0 = 0 corresponds to the case where the null
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mixture consists solely of the NOH null.

We call the associated Bayes factor the hybrid Bayes factor and denote it B(02)3 to

indicate that the null is the mixture of H0 (the nil) and H2 (δ ∈ (−c, c)) while the

alternative is H3 (δ /∈ (−c, c)):

B(02)3 =
P (Y |H0 or H2)

P (Y |H3)
.

Computation of B(02)3 is relatively straightforward. Because H0 and H2 are

mutually exclusive, the hybrid Bayes factor may be written

B(02)3 =
π0P (Y |H0) + (1− π0)P (Y |H2)

P (Y |H3)

where

π0 =
P (H0)

P (H0) + P (H2)

The constant π0 acts as a weight that must be determined before the analysis. It

represents the analyst’s prior beliefs about the proportion of null hypotheses that are nil.

Because the hypotheses H2 and H3 together are the same as the alternative H1 of the JZS

Bayes factor,

P (Y |H1) = π2P (Y |H2) + (1− π2)P (Y |H3)

Using the above facts, algebraic rearrangement yields

B(02)3 = π0B01(π2B23 − π2 + 1) +B23(1− π0), (11)

where

B01 =
P (Y |H0)

P (Y |H1)

B23 =
P (Y |H2)

P (Y |H3)

Thus, the hybrid Bayes factor B(02)3 is only a function of the point-null Bayes factor, the

corresponding NOH Bayes factor, and the mixing probability π0.
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The hybrid Bayes factor model may appear unusual at first glance. However, it has

some interesting properties that make it an attractive model for inference. First, it is a

generalization of both the JZS Bayes factor and the NOH Bayes factor. With c → 0, the

JZS Bayes factor is obtained. With π0 → 0, the NOH Bayes factor is obtained.

Parameters of the hybrid model may be manipulated to obtain other interesting models as

well, including tests of ordinal hypotheses to be discussed later.

Another interesting feature of the hybrid model can be seen by setting π0 = 1. This

model is shown in Figure 7A. The model represents the situation where the researcher

wants to ignore small effect sizes in testing a nil hypothesis. This is a direct test of

“reasonable” effect sizes against the nil. Figure 7B shows the corresponding hybrid Bayes

factor, which we call the notched Bayes factor. Johnson and Rossell (2010) proposed

similar priors on the alternative hypothesis for computing Bayes factors, arguing that these

priors balance the rates of evidence accumulation for the nil and the alternative. This can

be easily seen by comparing the rate of evidence accumulation for the nil hypothesis of the

JZS Bayes factor to the rate of accumulation of the hybrid Bayes factor in Figure 7B. The

notched Bayes factor follows the JZS Bayes factor fairly closely for moderate to large

effect sizes, but accumulates evidence for the nil more quickly for small effect sizes.

For researchers who want to include negligible effect sizes with the null hypothesis,

this is possible by making π0 < 1. Figure 6 shows the hybrid Bayes factor for π0 = 0.5 and

c = 0.2. Like the NOH Bayes factor, the hybrid Bayes factor has desirable convergence

property for all true effect sizes except those exactly on the boundary values.

Using the hybrid Bayes factor in the analysis of Grider and Malberg’s data, we may

take two approaches: π0 = 1, for the notched model in Figure 7A, and π0 < 1. The

notched Bayes factor yields BF(02)3 = 1.36. This represents more evidence for the nil than

the JZS Bayes factor, because negligible effect sizes don’t count towards the alternative.

On the other hand, it represents less evidence for the null than the NOH Bayes factor,
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because negligible effect sizes don’t count towards the null.

We can also compute the Bayes factor with both a point-null and an interval null.

With π0 = 0.5, we obtain a hybrid Bayes factor BF(02)3 = 2.50. Because the hybrid Bayes

factor includes effect sizes around the nil as evidence for the null hypothesis, this hybrid

Bayes factor indicates more evidence for the null hypothesis than the JZS Bayes factor.

Because it contains a point-null, it is indicates less evidence for the null than the NOH

Bayes factor.

Extensions to Ordinal Constraint

The preceding development focused on testing theories that predict equality

constraints. Some theories, however, predict only an ordering of covariate effects. In

general, Bayes factor is well-suited for assessing these ordinal constraints, and the Bayes

factor priors discussed previously may be extended in a straightforward manner.

Consider a researcher whose theory predicts a positive effect. If we assume that

small negligible effects may be found, even when the theory is false (Meehl, 1978), then it

is appropriate to set a lower limit on positive effects. For example, a researcher may

consider all effects above 0.2 as concordant with the hypothesis and all those below .2 as

inconcordant. Using standard NHST terminology, we call δ < .2 the null hypothesis (H0)

and the researcher’s hypothesis, δ ≥ .2, the alternative (H1), although the terms are

arbitrary in this case. Note that in this setup, negative effects are considered plausible

under the null. The computation of this one-sided Bayes factor is a straightforward

extension of the previous development. The one-sided Bayes factor is equivalent to the

NOH Bayes factor with a null region of (−∞, c). All other details remain the same. We

provide an applet to compute this one-sided Bayes factor at

http://pcl.missouri.edu/bayesfactor, and software at

http://drsmorey.org/research/rdmorey.
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The value of this one-sided Bayes factor for the Grider and Malberg data is 0.41.

When the Bayes factor is less than 1.0, it is often more convenient to report the reciprocal

and the favored hypothesis, which in this case is about 2.46 in favor of the the alternative.

The Bayes factor indicates that the data slightly favor a medium or large positive effect

over a negative or small positive one.

The one-sided hypothesis in the the left panel of Figure 8 assumes a rather flexible

null hypothesis that can includes large negative effects as well as near equalities. In many

cases, large negative effect sizes may be considered unreasonable or uninteresting a priori.

If negative effects are unreasonable or uninteresting, it is possible to eliminate them from

the test, because the Bayes factor will penalize the null hypothesis for the flexibility added

by the range of negative values. The right panel of Figure 8 shows the researcher’s

hypothesis as the alternative against a hybrid null consisting of a mixture between a point

nil at 0 and a region of unimportant positive effect sizes. This extension of the hybrid null

allows the researcher to test their hypothesis against the hypothesis that the effect is

unimportant and positive, or 0. This Bayes factor is reasonable when negative effects are

unreasonable a priori.

To compute the hybrid one-sided Bayes factor, we again relax the assumption of a

symmetric null region. First, we compute the hybrid Bayes factor of the nil versus all

positive values of δ, by setting the null region to (−∞, 0) and π0 = 1, and call this B1.

This yields the one-sided test of Wetzels et al. (2009). We then compute the Bayes NOH

Bayes factor B2, with null region (0, c) and alternative region (c,∞). The hybrid

one-sided Bayes factor may then be computed by applying Eq. 11.

Applying the hybrid one-sided Bayes factor with π0 = 0.5 and π0 = 1 to Grider and

Malberg’s data yields Bayes factors of 1.91 for the null, and 1.7 for the alternative,

respectively. Both of these Bayes factor values are concordant with the other Bayes factor

values computed in this paper, suggesting that the data have little evidentiary value.
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Discussion

In this paper we developed Bayes factors for testing equality and ordinal

constraints. Our advocacy of Bayes factor is based on the concept of evidence, namely

that researchers may consider it helpful to report the evidence in data for various

positions than make decisions with specified error rates. The Bayes factor is the marginal

probability of the data under two competing hypotheses, and this ratio is directly

interpretable without recourse to decision regions or error rates. It is possible to use Bayes

factors to compute quantities that are appropriate for decision-making, if desired.

Posterior odds reflect an analyst’s belief about the relative weighting of two hypotheses

given observed data and are a thus a natural quantity for making decisions. We find both

posterior odds and Bayes factor directly interpretable, though we prefer Bayes factor for

scientific communication. Some researchers, however, may argue that posterior odds are

more interpretable than Bayes factors. For example, there are Bayesian statistical

equivalence tests based on posterior odds rather than Bayes factor (e.g., Selwyn,

Dempster & Hall, 1981; Selwyn & Hall, 1984; Wellek, 2003). In fact, these tests are based

on improper priors in which the prior odds and Bayes factors cannot be meaningfully

defined. We view these approaches, in which one cannot quantify the amount of evidence

contributed by the data, as less advantageous.

Researchers who prefer posterior odds to Bayes factors may still use our methods;

they must, however, stipulate prior odds. Prior odds may be used to add context to an

analysis; if a hypothesis is highly unlikely a prior, it may be assigned low prior odds. One

example is Bem’s (in press) recent claim that participants can sense random events before

they occur, or precognition. We recently analyzed Bem’s claims, and found that the Bayes

factor computed from Dr. Bem’s reported data was 40 in favor of ESP (Rouder and

Morey, submitted). While this Bayes factor is large, we cautioned readers to use very

unfavorable prior odds in interpreting the results because precognition is contrary to
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well-established laws and principles in physics and biology. If one begins with extremely

low prior odds for a hypothesis, more evidence will be necessary. This strikes us as both

reasonable and a reflection of how scientists reason; quantifying of this reasoning whenever

possible will make the scientific process appropriately responsive to evidence. Prior odds

are therefore useful for adding context to a Bayes factor; however, due to its insensitivity

to prior odds, we recommend reporting of Bayes factor; computing posterior odds is then

simply a matter of multiplication, as can easily be seen in Eq. 4.

Bayes factor, the ratio of marginal probabilities, is contingent on specification of a

prior over parameters under competing hypotheses. We have presented a number of

different specifications for nulls and alternatives. Researcher interested in these techniques

my wonder which of the several null and alternatives they should use. Consider first the

question of assessing equality constraints. Our recommendation is the hybrid setup in

Figure 3D. This hybrid model is quite general and seems highly appropriate under many

conditions. We provide an easy-to-use web applet that calculates hybrid Bayes factors at

http://pcl.missouri.edu/bayesfactor, shown in Figure 9. For ordinal tests, we recommend

either Bayes factor in Figure 8 for assessing ordinal constraints, depending on whether the

researcher believes negative effects are reasonable a priori. Moreover, as previously

discussed, in Bayesian statistics, there is no drawback to computing and reporting

multiple tests.

Once a test is selected, researchers must also choose model parameters, such as

equivalence regions or the weight parameter π0. Choices of the equivalence regions and

weights of the point nil reflect reasoned beliefs about the problem at hand. In fields where

interesting effects are smaller (for example, subliminal priming), the width of the null

region may be made correspondingly small. In other fields where interesting effect sizes

are larger (for example, cognitive aging), the region may be made larger to suit. The task

of selecting boundaries is simplified somewhat by the parameterization. The models are
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parameterized with respect to standardized effect size. General guidelines already exist

(Cohen, 1988) and we note that many journals require reporting some measure of effect

size. Certainly if researchers are able to interpret effect size measures in the context of

existing literature, it is not difficult to extend this to setting bounds on equivalence

regions. Eventually conventions may arise, as they have with type I error rate. However,

because these Bayes factors are computed using only the t test statistic and sample size,

any researcher may calculate a Bayes factor for themselves, using a different equivalence

region.

In addition to specifying equivalence regions, computing the hybrid Bayes Factor

requires specifying the mixture probability that null hypotheses are nil, π0. The value of

π0 will depend on the type of test desired. For researchers who believe that nil hypotheses

are impossible a priori, or who are uninterested in the nil, π0 = 0 is a reasonable value.

For researchers who want to test nil hypotheses against reasonable, nonnegligible values of

δ, we recommend π0 = 1 with an null interval including negligible effect sizes (Figure 7A).

Other values may correspond to other models of interest. Setting π0 should pose no great

difficulty for researchers. If researchers report their test statistics, other researchers will be

able to reproduce the analysis with different values, if desired. In all cases, however, the

interpretation of Bayes factors should be understood in the context of the assumptions

about the equivalence regions and π0, and not as assumption-free measures of evidence.

It should also be noted that in spite of the wide range of models employed in this

paper to compute Bayes factors, in the example using Grider and Malmberg’s data, the

Bayes factor ranged from about 2.7 for an effect, to 3.6 against, all indicating that there is

little or no evidence for a substantial effect. It is not surprising that the Bayes factors

vary, because the null hypothesis tested was in each case different: some were point

hypothesis, some ranges of values, and some mixtures of the two. But the interpretation of

the Bayes factor with respect to the hypothesis in question, whether we should take the
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experiment as evidence of an effect, is substantially the same.

Conclusion

We have presented here a Bayes factor approach to hypothesis testing that has the

following advantages: first, it allows for null hypotheses that are not exactly nil. In this

way, small, uninteresting effects are not emphasized. Second, the use of Bayes factors

allows for the accumulation of evidence for both the null and the alternative hypotheses

simultaneously. Third, because the Bayes factor is a relative measure, it does not

overstate the evidence against a default hypothesis. Fourth, the framework suggested is

sufficiently general to construct tests of equivalence and ordinal tests. The key innovation

in these Bayes factors is that they allow researchers to accept a theoretically meaningful

constraint even when it fails for trivial or uninteresting reasons, through the use of

equivalence regions. This ability to judiciously quantify the evidence for and against

constraints in real-world situations should lead to better understanding of lawfulness and

parsimony in psychology.
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Appendix A

Derivation of Nonoverlapping Bayes Factor

The joint prior p2 on δ and σ2 for hypothesis H2 is

p2(δ,σ
2) =

1

π2σ2
tν0,r(δ)I(δ ∈ ∆2)

where tν0,r is the density function of the central t distribution with ν0 degrees of freedom

and scale r, I is an indicator function, ∆2 is the null region (−c, c), and

π2 =

∫ c

−c
tν0,r(δ)dδ

Similarly, the joint prior for H3 is

p3(δ,σ
2) =

1

(1− π2)σ2
tν0,r(δ)I(δ /∈ ∆2)

The NOH Bayes factor is the ratio of the marginal likelihoods,

B23 =

∫

δ∈∆2

∫

σ2
p(Y |σ2, δ)p2(δ,σ

2)dδσ2

/ ∫

δ∈∆2

∫

σ2
p(Y |σ2, δ)p3(δ,σ

2)dδ, dσ2(12)

To find a complete expression of the Bayes Factor, we first consider the joint

posterior of δ and σ2:

p(δ,σ2|Y ) ∝ 1

π2
(σ2)−

N
2 exp

{
− 1

2σ2

∑

i

(yi − σδ)2
}
(σ2)−1

(
1 +

(δ/r)2

ν0

)− ν0+1
2

(13)

The constants with respect to σ2 and δ can be safely ignored, because the will be the

same for both the numerator and the denominator in Eq. 12. Expanding the square and

distributing the sum yields

p(δ,σ2|y) ∝ 1

π2
(σ2)−

N
2 exp

{
− 1

2σ2

(
∑

i

y2i − 2σδNȲ +Nσ2δ2
)}

(σ2)−1

(
1 +

(δ/r)2

ν0

)− ν0+1
2

Using the identity
∑

i y
2
i = (N − 1)s2 +Nȳ2,

p(δ,σ2|y) ∝ 1

π2
(σ2)−

N
2 exp

{
− 1

2σ2

(
(N − 1)s2 +NȲ 2 − 2σδNȲ +Nδ2σ2

)}
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×(σ2)−1

(
1 +

(δ/r)2

ν0

)− ν0+1
2

∝ (σ2)−
N
2 exp

{
− s2

2σ2

(
(N − 1) +

NȲ 2

s2
− 2

σδNȲ

s2
+

Nσ2δ2

s2

)}

×(σ2)−1

(
1 +

(δ/r)2

ν0

)− ν0+1
2

∝ 1

π2
(σ2)−

N
2

× exp

{
− 1

2σ2/s2

(
(N − 1) +

NȲ 2

s2
− 2

√
Nδ

σ

s

√
NȲ

s
+Nδ2

σ2

s2

)}

×(σ2)−1

(
1 +

(δ/r)2

ν0

)− ν0+1
2

We can substitute the following notation:

t =
Ȳ

s/
√
N

λ2 =
σ2

s2

The substitution yields

p(δ,σ2|y) ∝ 1

π2
(λ2)−

N
2 (s2)−

N
2 exp

{
−N − 1

2λ2

}

× exp

{
− 1

2λ2

(
t2 − 2

√
Nδλ2t+Nδ2λ2

)}

×(λ2)−1(s2)−1

(
1 +

(δ/r)2

ν0

)− ν0+1
2

∝ 1

π2
(λ2)−

N
2 −1 exp

{
−N − 1

2λ2

}

× exp

{
− 1

2λ2

(
t− δ

√
Nλ2

)2
}

×
(
1 +

(δ/r)2

ν0

)− ν0+1
2

After a similar simplification for H3, the NOH Bayes Factor is

B23 =

∫
δ∈∆2

∫
λ2(λ2)−

N
2 −1 exp

{
−N−1

2λ2 − 1
2λ2

(
t− δ

√
Nλ2

)2
}(

1 + (δ/r)2

ν0

)− ν0+1
2

dλ2dδ

∫
δ∈∆3

∫
λ2(λ2)−

N
2 −1 exp

{
−N−1

2λ2 − 1
2λ2

(
t− δ

√
Nλ2

)2
}(

1 + (δ/r)2

ν0

)− ν0+1
2

dλ2dδ

× 1− π2
π2

where ∆3 is the complement of ∆2.
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Appendix B

Approaches to computing the Bayes factor

One standard approach to numerical integration is Gaussian quadrature

(Abramowitz & Stegun, 1965; Press, Flannery, Teukolsky, & Vetterling, 1988), which is

implemented in many software packages including Matlab and R. We have found that

Gaussian quadrature integration is very quick in practice, but can be unstable in

circumstances where the posterior mass is highly concentrated over a small interval.

A second approach is using Normal approximations to the marginal posterior

distribution of δ. As before, Gaussian quadrature may be used to integrate out σ2,

yielding the marginal posterior on δ. For reasonable sample sizes, the marginal posterior

will be approximately Normally distributed (Bernardo & Smith, 2000). Laplace’s method

(Laplace, 1774/1986) approximates an integral using the normal distribution function,

leading to a highly accurate approximation for the integral and thus the posterior odds.

The prior odds may be computed easily by standard statistical software. In cases where

Gaussian quadrature fails, Laplace’s method may be used to compute the NOH Bayes

factor quickly and accurately.
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Footnotes

1A point hypothesis on a parameter takes the form θ = c The hypothesis may be

rewritten as θ′ = 0, where θ′ = θ − c.

2The distribution function of normal distribution with mean µ and variance σ2 is

φ(y | µ,σ2) = (2πσ2)
− 1

2 exp

{
− (y−µ)2

2σ2

}

3Consistency can be obtained in conventional NHST if the type I error rate is

reduced to zero with increasing sample size, but this is not done in practice and to our

knowledge no one has proposed a way of doing so.
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Figure Captions

Figure 1. Statistical equivalence testing with confidence intervals. The shaded region

represents the equivalence region. When the confidence interval is completely within the

equivalence region, the null hypothesis of nonequivalence is rejected.

Figure 2. Evidence against the null hypothesis given a just-significant p value. The square

represents the likelihood of a t value of 1.75 under the nil hypothesis, which is here

represented by a central t distribution (dark density). The circle represents the likelihood

of a t value of 1.75 given the alternative that the true standardized effect size is 0.2,

represented here by a noncentral t distribution (lighter density).

Figure 3. Four models to be considered for the one-sample t test Bayes Factor. A: The

null hypothesis is a point, and the alternative is a Cauchy distribution. B: The null and

alternative models are both Cauchy distributions, with different scales. C: The null and

alternative are different intervals from the same Cauchy distribution. D: The null

hypothesis includes both an interval and a point-null component.

Figure 4. Bayes factor as a function of sample size for a true effect size of δ = 1. Plotted

are the Bayes factor for the median t value at each sample size. The

overlapping-hypotheses Bayes Factor does not converge to 0, while the JZS Bayes Factor

and the nonoverlapping Bayes Factor both converge.

Figure 5. Nonoverlapping Bayes factor as a function of sample size for a few true effect

sizes. Plotted are the Bayes factor for the median t value at each sample size. The solid,

dashed, and dashed-dotted lines represent true effect sizes of δ = 0, 0.2, 0.5. For each line

type, the upper and middle line are the NOH Bayes factor with the Cauchy and Normal

prior, and the lower line is the corresponding JZS Bayes factor. The null interval is

(-0.2,0.2).
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Figure 6. Hybrid Bayes factor as a function of sample size for a few true effect sizes.

Plotted are the Bayes factor for the median t value at each sample size. The solid, dashed,

and dashed-dotted lines represent true effect sizes of δ = 0, 0.2, 0.5. For each line type, the

upper and middle line are the NOH Bayes factor with the Cauchy and Normal prior, and

the lower line is the corresponding JZS Bayes factor. The null hypothesis has mixing

probability π0 = 0.5 and extends on the interval (−.2, .2).

Figure 7. A: The hybrid model with π0 = 1. There is an interval of small effect sizes

which cannot occur under either hypothesis. B: Bayes factor as a function of sample size

for a few true effect sizes. Plotted are the Bayes factor for the median t value at each

sample size. The solid, dashed, and dashed-dotted lines represent true effect sizes of

δ = 0, 0.2, 0.5. For each line type, the upper and middle line are the NOH Bayes factor

with the Cauchy and Normal prior, and the lower line is the corresponding JZS Bayes

factor. The null region was (-0.2,0.2) and π0 = 1.

Figure 8. Possible one-sided hypotheses. The left panel shows hypotheses for a test of

important positive effects against all other effects. The right panel shows hypotheses for a

test of important positive effects against either no effect or unimportant positive effects.

Figure 9. The web applet at http://pcl.missouri.edu/bayesfactor for computing area and

hybrid Bayes factors. Users specify the sample size, t value, equivalence region, π0, and

the prior scale. The web applet returns the corresponding Bayes factor.
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