A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process

Jeffrey N. Rouder & Mike Pratte

November, 2010
Symposium: Practical Benefits of Bayesian Data Analysis

Please note correct talk times:

11:30 - 11:50. Multiple Comparisons and Power Make Sense in Bayesian Analysis. John K. Kruschke, Indiana University, Bloomington.
Cognitive Structure
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
The Skill Acquisition Nightmare

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
The Skill Acquisition Nightmare

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
The Skill Acquisition Nightmare

From Aggregation

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process

Jeffrey N. Rouder & Mike Pratte
Example: Recognition Memory

PROPOSITION: Dual-Process Theory

- Two core processes: Recollection, Familiarity
Example: Recognition Memory

PROPOSITION: Dual-Process Theory

- Two core processes: Recollection, Familiarity
- Recollection and familiarity parameters may vary across people and items.
Example: Recognition Memory

PROPOSITION: Dual-Process Theory

- Two core processes: Recollection, Familiarity
- Recollection and familiarity parameters may vary across people and items.
- For each item-by-person combination, there is a mixture of recollection and familiarity.
Example: Recognition Memory

PROPOSITION: Dual-Process Theory

▶ Two core processes: Recollection, Familiarity
▶ Recollection and familiarity parameters may vary across people and items.
▶ For each item-by-person combination, there is a mixture of recollection and familiarity.
▶ Mixture is core cognitive process.
PROPOSITION: Dual-Process Theory

- Two core processes: Recollection, Familiarity
- Recollection and familiarity parameters may vary across people and items.
- For each item-by-person combination, there is a mixture of recollection and familiarity.
- Mixture is core cognitive process.
- Mixture is NOT because some items are mediated by familiarity and others are mediated by recollection.
We aggregate data across items or people (or both) to tabulate rates (e.g., hit rate). Seemingly necessary, does aggregation conflate core structure with variation across items and people?
We aggregate data across items or people (or both) to tabulate rates (e.g., hit rate)
We aggregate data across items or people (or both) to tabulate rates (e.g., hit rate)

Seemingly necessary
We aggregate data across items or people (or both) to tabulate rates (e.g., hit rate).

Seemingly necessary.

Does aggregation conflate core structure with variation across items and people?
Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Recognition Memory Nightmare

Dual-Process: $\hat{r} \approx 0.25$.

Even though no recollection in process.

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Dual-Process:
\(\hat{r} \approx 0.25 \)

Even though no recollection in process.
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Recognition Memory Nightmare

Dual-Process: $\hat{r} \approx 0.25$

Even though no recollection in process.

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Recognition Memory Nightmare

- Dual-Process: $\hat{r} \approx 0.25$
- Even though no recollection in process.

Jeffrey N. Rouder & Mike Pratte
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
1. To avoid conflation of people/item effects with core processes, we need to avoid aggregation.
Big Picture

1. To avoid conflation of people/item effects with core processes, we need to avoid aggregation.
2. To avoid aggregation, we need hierarchical nonlinear models (HNLM)
1. To avoid conflation of people/item effects with core processes, we need to avoid aggregation.

2. To avoid aggregation, we need hierarchical nonlinear models (HNLM)

3. Bayesian nonlinear hierarchical models are tractable
1. To avoid conflation of people/item effects with core processes, we need to avoid aggregation.
2. To avoid aggregation, we need hierarchical nonlinear models (HNLM)
3. Bayesian nonlinear hierarchical models are tractable
4. Using Bayesian analysis to solve hard problems that we could not otherwise solve.
Big Picture

Bayesian Hierarchical Applications From My Lab:

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Big Picture

Bayesian Hierarchical Applications From My Lab:

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Bayesian Hierarchical Applications From My Lab:

- **RT Modeling**: Rouder et al. 2004, Pmetrika; Rouder et al. 2005, PBR; Rouder et al. 2008, PBR; Rouder et al 2010, PsycRev

- **Subliminal Priming**: Rouder et al. 2007, PBR; Morey et al. 2008, JMP; Rouder & Morey, 2009, PsycRev; Morey et al., 2009, Pmetrika

- **Process Dissociation**: Rouder et al., 2008, JEPG

- **Recognition Memory**: Rouder & Lu, 2005; Rouder et al., 2007, Pmetrika; Morey et al., JMP, 2008; Pratte et al. 2010, JEPLMC; Pratte & Rouder, JMP, soon.
Bayesian Hierarchical Applications From My Lab:

- **RT Modeling**: Rouder et al. 2004, Pmetrika; Rouder et al. 2005, PBR; Rouder et al. 2008, PBR; Rouder et al. 2010, PsycRev
- **Subliminal Priming**: Rouder et al. 2007, PBR; Morey et al. 2008, JMP; Rouder & Morey, 2009, PsycRev; Morey et al. 2009, Pmetrika
- **Process Dissociation**: Rouder et al., 2008, JEPG
Big Picture

Bayesian Hierarchical Applications From My Lab:

- **Subliminal Priming**: Rouder et al. 2007, PBR; Morey et al, 2008, JMP; Rouder & Morey, 2009, PsycRev, Morey et al, 2009, Pmetrika
- **Process Dissociation**: Rouder et al., 2008, JEPG
- **Recognition Memory**: Rouder & Lu, 2005; Rouder et al., 2007, Pmetrika; Morey et al., JMP, 2008; Pratte et al. 2010, JEPLMC; Pratte & Rouder, JMP, soon.
Dual-Process: \(\hat{r} \approx .25 \)
QUESTION: Is the often-observed asymmetry in ROCs a simple artifact of aggregation?
QUESTION: Is the often-observed asymmetry in ROCs a simple artifact of aggregation?

APPROACH: Analysis w/ a hierarchical dual-process model that separates people and item effects from core processes.
QUESTION: Is the often-observed asymmetry in ROCs a simple artifact of aggregation?

APPROACH: Analysis w/ a hierarchical dual-process model that separates people and item effects from core processes.

SPECIFICS:
- Recollection indexes asymmetry.
- Q: Is there any evidence of recollection if item and participant effects are modeled?
Hierarchical Dual Process Model

- PARADIGM: Vanilla Recognition Memory
- TASK: Vanilla Confidence Ratings
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Recentered Familiarity

New Parameterization

\[d(n) \quad d(s) \]

Density

Familiarity

Jeffrey N. Rouder & Mike Pratte
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
PARAMETERS:

- r_{ij}: Probability of recollection for ith subject and jth item
- $d(n)_{ij}$: Baseline familiarity for the ith subject and jth item
- $d(s)_{ij}$: Studied-item familiarity for the ith subject and jth item

Middle criterion set to 0
Remaining criteria are unique to each participant
Hierarchical Dual Process Model

PARAMETERS:

- r_{ij}: Probability of recollection for ith subject and jth item
- $d_{ij}(n)$: Baseline familiarity for the ith subject and jth item
- $d_{ij}(s)$: Studied-item familiarity for the ith subject and jth item

Middle criterion set to 0

Remaining criteria are unique to each participant
Hierarchical Dual Process Model

PARAMETERS:

- r_{ij}: Probability of recollection for ith subject and jth item
- $d_{ij}^{(n)}$: Baseline familiarity for the ith subject and jth item
Hierarchical Dual Process Model

PARAMETERS:

- \(r_{ij} \): Probability of recollection for \(i \)th subject and \(j \)th item
- \(d_{ij}^{(n)} \): Baseline familiarity for the \(i \)th subject and \(j \)th item
- \(d_{ij}^{(s)} \): Studied-item familiarity for the \(i \)th subject and \(j \)th item

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Hierarchical Dual Process Model

PARAMETERS:

- \(r_{ij} \): Probability of recollection for \(i \)th subject and \(j \)th item
- \(d_{ij}^{(n)} \): Baseline familiarity for the \(i \)th subject and \(j \)th item
- \(d_{ij}^{(s)} \): Studied-item familiarity for the \(i \)th subject and \(j \)th item
- Middle criterion set to 0

Remaining criteria are unique to each participant
Hierarchical Dual Process Model

Too Many Parameters!
Hierarchical Dual Process Model

Constraint Through Additive Models:

Baseline Fam.: \(d_{ij}^{(n)} = \text{grand mean}^{(n)} + \text{person}_{i}^{(n)} + \text{item}_{j}^{(n)} \)

Studied Fam.: \(d_{ij}^{(s)} = \text{grand mean}^{(s)} + \text{person}_{i}^{(s)} + \text{item}_{j}^{(s)} \)

Recollection: \(r_{ij} = F \left(\text{grand mean}^{(r)} + \text{person}_{i}^{(r)} + \text{item}_{j}^{(r)} \right) \)
Hierarchical Dual Process Model

PRIORS:

\[\sigma_k^2 \sim \text{Inverse Gamma}, \quad k = 1, \ldots, 6 \]
Evidence for Recollection?

Big Experiment:
- 240 items at study, 480 items total
Evidence for Recollection?

Big Experiment:
- 240 items at study, 480 items total
- 95 people

Testament to the power of Bayesian analytic methods

Focus on grand mean of recollection.
Evidence for Recollection?

Big Experiment:
- 240 items at study, 480 items total
- 95 people
- Over 45,000 responses
Evidence for Recollection?

Big Experiment:
- 240 items at study, 480 items total
- 95 people
- Over 45,000 responses
- Total of 2114 parameters

Testament to the power of Bayesian analytic methods
Evidence for Recollection?

Big Experiment:
- 240 items at study, 480 items total
- 95 people
- Over 45,000 responses
- Total of 2114 parameters
- Testament to the power of Bayesian analytic methods
- Focus on grand mean of recollection.
Evidence for Recollection

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Evidence for Recollection

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Two Processes?

- Do People Who Exhibit High Recollection Exhibit High Familiarity?
- Do Items That Elicit High Recollection Elicit High Familiarity?
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Selective Influence Over Processes

Recollection Enhancement:
- Shallow: Count Vowels
- Deep: Produce a related word

Familiarity Enhancement:
- Perceptual Match vs. Mismatch: Font, Case, Modality

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Selective Influence Over Processes

- Recollection Enhancement:

- Levels of Processing:
 - Shallow: Count Vowels
 - Deep: Produce a related word

- Familiarity Enhancement:
 - Perceptual Match vs. Mismatch: Font, Case, Modality

Jeffrey N. Rouder & Mike Pratte
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Selective Influence Over Processes

- Recollection Enhancement:
 - Levels of Processing
 - Shallow: Count Vowels
 - Deep: Produce a related word
Selective Influence Over Processes

- Recollection Enhancement:
 - Levels of Processing
 - Shallow: Count Vowels
 - Deep: Produce a related word
- Familiarity Enhancement:
Selective Influence Over Processes

- **Recollection Enhancement:**
 - Levels of Processing
 - Shallow: Count Vowels
 - Deep: Produce a related word

- **Familiarity Enhancement:**
 - Perceptual Match vs. Mismatch
 - Font, Case, Modality
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Induce a Familiarity Effect

RESPONSE DEADLINE

- Boldini, et al, 2004
- With Long Deadline:
 Big LOP Effects, No Match/Mismatch Effects
- With Short Deadline:
 No LOP Effects, Moderate Match/Mismatch Effects
Expt 2: With Deadline

Jeffrey N. Rouder & Mike Pratte
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Experiment 3

High Recollection, Low Familiarity

- Short Study List (80 vs. 240 items)
- Response Deadline
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process

Jeffrey N. Rouder & Mike Pratte
A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process
Conclusions: Recognition Memory

1. Asymmetry in ROCs reflects underlying core processing.
2. Hierarchical model reveals strong correlation between recollection and familiarity.
3. Perhaps there is a single latent process driving both.
Conclusions: Recognition Memory

1. Asymmetry in ROCs reflects underlying core processing.
Conclusions: Recognition Memory

1. Asymmetry in ROCs reflects underlying core processing.
2. Hierarchical model reveals strong correlation between recollection and familiarity.
Conclusions: Recognition Memory

1. Asymmetry in ROCs reflects underlying core processing.
2. Hierarchical model reveals strong correlation between recollection and familiarity.
3. Perhaps there is a single latent process driving both.
Conclusions: Recognition Memory

Limitations

- Specific Dual Process Model
 - Familiarity is normal, equal-variance
 - Recollection is all-or-none
Conclusions: Recognition Memory

Limitations

- Specific Dual Process Model
 Familiarity is normal, equal-variance
 Recollection is all-or-none

- Preferable to have a nonparametric/axiomatic approach to stipulating memory processes.
Conclusions: Recognition Memory

Limitations

- Specific Dual Process Model
 Familiarity is normal, equal-variance
 Recollection is all-or-none

- Preferable to have a nonparametric/axiomatic approach to stipulating memory processes.

- Don’t Miss:
 - Rouder A Nonparametric Definition and Test of Single Process in Recognition Memory, 10:20a, Sunday, Mississippi Room.
Conclusions: Bayesian Modeling

1. Hierarchical modeling allows us to separate variation in item and participant effects from cognitive processes.
2. Provide uncontaminated view of process.
3. Bayesian analysis makes hierarchical nonlinear modeling tractable (and fun).

Jeffrey N. Rouder & Mike Pratte

A Hierarchical Bayesian Dual-Process Model Reveals That Recognition Memory May Be Mediated by a Single Process.
1. Hierarchical modeling allows us to separate variation in item and participant effects from cognitive processes
Conclusions: Bayesian Modeling

1. Hierarchical modeling allows us to separate variation in item and participant effects from cognitive processes
2. Provide uncontaminated view of process
Conclusions: Bayesian Modeling

1. Hierarchical modeling allows us to separate variation in item and participant effects from cognitive processes
2. Provide uncontaminated view of process
3. Bayesian analysis makes hierarchical nonlinear modeling tractable (and fun)
Thank You